Unsupervised machine learning accelerates solid electrolyte discovery

被引:1
|
作者
Xu Zhang [1 ]
Bin Tang [1 ]
Zhen Zhou [1 ]
机构
[1] School of Materials Science and Engineering, Computational Centre for Molecular Science, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Cent
关键词
D O I
暂无
中图分类号
TM912 [蓄电池];
学科分类号
0808 ;
摘要
Traditional organic liquid electrolytes used in commercial Li-ion batteries would incur serious safety issues due to their flammability and volatility [1]. The exploration and design of solid electrolytes with high room-temperature Li-ion conductivities (σ;) are important to improve the safety and cycle life of Li-ion batteries [2]. Although previous investigations have proven that various physical factors correlate with Li-ion diffusion in solids,
引用
收藏
页码:3 / 4
页数:2
相关论文
共 50 条
  • [1] Unsupervised machine learning accelerates solid electrolyte discovery
    Zhang, Xu
    Tang, Bin
    Zhou, Zhen
    [J]. GREEN ENERGY & ENVIRONMENT, 2021, 6 (01) : 3 - 4
  • [2] Machine learning accelerates the materials discovery
    Fang, Jiheng
    Xie, Ming
    He, Xingqun
    Zhang, Jiming
    Hu, Jieqiong
    Chen, Yongtai
    Yang, Youcai
    Jin, Qinglin
    [J]. MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [3] Machine learning accelerates the materials discovery
    Fang, Jiheng
    Xie, Ming
    He, Xingqun
    Zhang, Jiming
    Hu, Jieqiong
    Chen, Yongtai
    Yang, Youcai
    Jin, Qinglin
    [J]. MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [4] Leveraging Uncertainty in Machine Learning Accelerates Biological Discovery and Design
    Hie, Brian
    Bryson, Bryan D.
    Berger, Bonnie
    [J]. CELL SYSTEMS, 2020, 11 (05) : 461 - +
  • [5] Machine-Learning Approaches for the Discovery of Electrolyte Materials for Solid-State Lithium Batteries
    Hu, Shengyi
    Huang, Chun
    [J]. BATTERIES-BASEL, 2023, 9 (04):
  • [6] Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
    Vasylenko, Andrij
    Gamon, Jacinthe
    Duff, Benjamin B.
    Gusev, Vladimir V.
    Daniels, Luke M.
    Zanella, Marco
    Shin, J. Felix
    Sharp, Paul M.
    Morscher, Alexandra
    Chen, Ruiyong
    Neale, Alex R.
    Hardwick, Laurence J.
    Claridge, John B.
    Blanc, Frederic
    Gaultois, Michael W.
    Dyer, Matthew S.
    Rosseinsky, Matthew J.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [7] Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
    Andrij Vasylenko
    Jacinthe Gamon
    Benjamin B. Duff
    Vladimir V. Gusev
    Luke M. Daniels
    Marco Zanella
    J. Felix Shin
    Paul M. Sharp
    Alexandra Morscher
    Ruiyong Chen
    Alex R. Neale
    Laurence J. Hardwick
    John B. Claridge
    Frédéric Blanc
    Michael W. Gaultois
    Matthew S. Dyer
    Matthew J. Rosseinsky
    [J]. Nature Communications, 12
  • [8] Postcardiac Arrest Physiological Endotype Discovery With Unsupervised Machine Learning
    Kim, Han B.
    Afshar, Ali Sobhi
    Stevens, Robert D.
    [J]. CIRCULATION, 2020, 142 (24) : E499 - E500
  • [9] Machine Learning Accelerates Discovery of Optimal Colloidal Quantum Dot Synthesis
    Voznyy, Oleksandr
    Levina, Larissa
    Fan, James Z.
    Askerka, Mikhail
    Jain, Ankit
    Choi, Min-Jae
    Ouellette, Olivier
    Todorovic, Petar
    Sagar, Laxmi K.
    Sargent, Edward H.
    [J]. ACS NANO, 2019, 13 (10) : 11122 - 11128
  • [10] Machine learning approach accelerates search for solid state electrolytes
    Tang, Le
    Zhang, Guozhen
    Jiang, Jun
    [J]. CHINESE JOURNAL OF CHEMICAL PHYSICS, 2024, 37 (04) : 505 - 512