由g-Bessel序列定义的线性算子的一些性质

被引:8
|
作者
肖祥春
朱玉灿
王燕津
丁明玲
机构
[1] 福州大学数学与计算机科学学院
关键词
g-框架; g-Bessel序列; g-Riesz基; 线性算子;
D O I
暂无
中图分类号
O177.1 [希尔伯特空间及其线性算子理论];
学科分类号
摘要
在复Hilbert空间中由2个g-Bessel序列定义了一个有界线性算子L,讨论了它的一些性质,并把它应用到讨论g-框架的交错对偶框架的性质.
引用
收藏
页码:326 / 330
页数:5
相关论文
共 9 条
  • [1] G-frames and g-Riesz bases. Sun W. Journal of Mathematical Analysis and Applications . 2006
  • [2] A class of nonharmonic Fourier series. Duffin R J,Schaeffer A C. Transactions of the American Mathematical Society . 1952
  • [3] An introduction to frames and Riesz bases. Christensen O. . 2003
  • [4] The art of frame theory. Casazza P G. Taiwanese Journal of Mathematics . 2000
  • [5] Tight frame:an efficient way for high-resolution image reconstruction. Chan R H,Riemenschneider S D,Shen L,et al. Comput Harmon Anal . 2004
  • [6] Perturbation of regular sampling in shift-invariant space for frames. Zhao Ping,Zhao Chun,Casazza P G. IEEE Transactions on Information Theory . 2006
  • [7] On some identities and inequalities for frames in Hilbert spaces. G儯vruta P. Journal of Mathematical Analysis and Applications . 2006
  • [8] Optimal tight frames and quantum measurement. Eldar Y,Forney G D. IEEE Transactions on Information Theory . 2002
  • [9] Painless nonorthogonal expansions. Daubechies I,Grossmann A,Meyer Y. Journal of Mathematical Physics . 1986