The Pathwise Connected Components of Path Space on Manifold Mn

被引:0
|
作者
机构
关键词
Path; The Pathwise Connected Components of Path Space on Manifold M_n;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ωbe the path space consists of all piecewise C-path joining point pair A≠Aon a n-dimensional connected differential manifold M. We know that the connectivity numbers of Ωare invariants of M. In other words,these quantities are independent of the point pair A≠Aon M. Ωis not pathwise connected in general. So we can divide Ωto several pathwise connected components. Let C(h) be the pathwise connected component involving the piecewise C-path h.
引用
收藏
页码:382 / 382
页数:1
相关论文
共 50 条
  • [1] Path connected components in the space of weighted composition operators on the QA space
    Izuchi, Kei Ji
    Izuchi, Yuko
    STUDIA MATHEMATICA, 2018, 243 (03) : 251 - 267
  • [2] Path connected components of the space of Volterra-type integral operators
    Tesfa Mengestie
    Archiv der Mathematik, 2018, 111 : 389 - 398
  • [3] Path connected components of the space of Volterra-type integral operators
    Mengestie, Tesfa
    ARCHIV DER MATHEMATIK, 2018, 111 (04) : 389 - 398
  • [4] Diffeomorphism on path connected components and applications
    Ding, Hong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (01)
  • [5] Geometric prequantization on the path space of a prequantized manifold
    Biswas, Indranil
    Chatterjee, Saikat
    Dey, Rukmini
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (03)
  • [6] Dense embeddings in pathwise connected spaces
    Fedeli, A
    Le Donne, A
    TOPOLOGY AND ITS APPLICATIONS, 1999, 96 (01) : 15 - 22
  • [7] Pathwise vs. path-by-path uniqueness
    Shaposhnikov, Alexander
    Wresch, Lukas
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (03): : 1640 - 1649
  • [8] Grouping connected components using minimal path techniques
    Deschamps, T
    Cohen, LD
    GEOMETRIC METHODS IN BIO-MEDICAL IMAGE PROCESSING, 2002, : 91 - 106
  • [9] Pathwise differentiation of worldline path integrals
    Mackrory, Jonathan B.
    Zheng, He
    Steck, Daniel A.
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [10] Regulatory networks and connected components of the neutral space
    Boldhaus, G.
    Klemm, K.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 77 (02): : 233 - 237