Block Sparse Recovery via Mixed l2/l1 Minimization

被引:0
|
作者
Jun Hong LIN [1 ]
Song LI [1 ]
机构
[1] Department of Mathematics, Zhejiang University
基金
中国国家自然科学基金;
关键词
Compressed sensing; block RIP; block sparsity; mixed l2 /l1 minimization;
D O I
暂无
中图分类号
TN911.7 [信号处理]; O175 [微分方程、积分方程];
学科分类号
070104 ; 0711 ; 080401 ; 080402 ;
摘要
We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s < 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2 /l1 -minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: δs < 0.307.
引用
收藏
页码:1401 / 1412
页数:12
相关论文
共 50 条
  • [1] Block sparse recovery via mixed l2/l1 minimization
    Jun Hong Lin
    Song Li
    [J]. Acta Mathematica Sinica, English Series, 2013, 29 : 1401 - 1412
  • [2] k Block Sparse Vector Recovery via Block l1 - l2 Minimization
    Xie, Shaohua
    Liang, Kaihao
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (05) : 2897 - 2915
  • [3] Block sparse recovery via mixed l 2/l 1 minimization
    Lin, Jun Hong
    Li, Song
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (07) : 1401 - 1412
  • [4] A perturbation analysis of block-sparse compressed sensing via mixed l2/l1 minimization
    Zhang, Jing
    Wang, Jianjun
    Wang, Wendong
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (04)
  • [5] Sorted L1/L2 Minimization for Sparse Signal Recovery
    Wang, Chao
    Yan, Ming
    Yu, Junjie
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (02)
  • [6] A necessary and sufficient condition for sparse vector recovery via l1 - l2 minimization
    Bi, Ning
    Tang, Wai-Shing
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 56 : 337 - 350
  • [7] A new sufficient condition for sparse vector recovery via l1 - l2 local minimization
    Bi, Ning
    Tan, Jun
    Tang, Wai-Shing
    [J]. ANALYSIS AND APPLICATIONS, 2021, 19 (06) : 1019 - 1031
  • [8] k-sparse vector recovery via Truncated l1 - l2 local minimization
    Xie, Shaohua
    Li, Jia
    [J]. OPTIMIZATION LETTERS, 2024, 18 (01) : 291 - 305
  • [9] MINIMIZATION OF L1 OVER L2 FOR SPARSE SIGNAL RECOVERY WITH CONVERGENCE GUARANTEE
    Tao, M. I. N.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02): : A770 - A797
  • [10] On Recovery of Sparse Signals Via l1 Minimization
    Cai, T. Tony
    Xu, Guangwu
    Zhang, Jun
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (07) : 3388 - 3397