Residual Finiteness of Finitely Generated Quasi-commutative Semigroups

被引:0
|
作者
江中豪
机构
关键词
Residual Finiteness of Finitely Generated Quasi-commutative Semigroups;
D O I
暂无
中图分类号
学科分类号
摘要
A semigroup S is called residually finite if for any pair of distinct elements a,b∈S, there exists a congruence P on S such that S/p is finite and (a,b) P. In1958, Malcev proved the following theorem: Any finitely generated abelian semigroupis residually finite . In this paper,we prove that a finitely generated quasi-commu-tative semigroup is residually finite. It generalizes the above theorem.
引用
收藏
页码:123 / 123
页数:1
相关论文
共 3 条
  • [1] Lallement,G.OnaTheoremofMalcev. Proceedings of the American Mathematical Society . 1971
  • [2] B. M. Schein.Homomorphisms and Subdirect Decompositions of Semigroups. Pacific Journal of Mathematics . 1966
  • [3] Malcev,A.I.OnHomorphismsOntoFiniteGroups. Uch. Zap. Ivanovsk Pedagogm Inst . 1958