We study the Banach-Lie group Ltaut(A) of Lie triple automorphisms of a complex associative H*-algebra A. Some consequences about its Lie algebra, the algebra of Lie triple derivations of A, Ltder(A), are obtained. For a topologically simple A, in the infinite-dimensional case we have Ltaut(A)0 = Aut(A) implying Ltder(A) = Der(A). In the finite-dimensional case Ltaut(A)0 is a direct product of Aut(A) and a certain subgroup of Lie derivations δ from A to its center, annihilating commutators.
机构:
Romanian Acad, Inst Math S Stoilow, 21 Calea Grivitei St, Bucharest 010702, RomaniaRomanian Acad, Inst Math S Stoilow, 21 Calea Grivitei St, Bucharest 010702, Romania
Beltita, Daniel
Golinski, Tomasz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bialystok, Inst Math, Ciolkowskiego 1M, PL-15245 Bialystok, PolandRomanian Acad, Inst Math S Stoilow, 21 Calea Grivitei St, Bucharest 010702, Romania
Golinski, Tomasz
论文数: 引用数:
h-index:
机构:
Jakimowicz, Grzegorz
Pelletier, Fernand
论文数: 0引用数: 0
h-index: 0
机构:
Univ Savoie Mt Blanc, CNRS, Lab Math LAMA, UMR 5127, Campus Sci, F-73370 Le Bourget Du Lac, FranceRomanian Acad, Inst Math S Stoilow, 21 Calea Grivitei St, Bucharest 010702, Romania