THE BANACH-LIE GROUP OF LIE TRIPLE AUTOMORPHISMS OF AN H*-ALGEBRA

被引:0
|
作者
A.J.Calderón Martín [1 ]
C.Martín González [2 ]
机构
[1] Departamento de Matemáticas, Universidad de Cádiz
[2] Departamento de Algebra, Geometría y Topología, Universidad de Málaga
关键词
Banach-Lie group; Lie triple automorphism; Lie triple derivation;
D O I
暂无
中图分类号
O152.5 [李群];
学科分类号
070104 ;
摘要
We study the Banach-Lie group Ltaut(A) of Lie triple automorphisms of a complex associative H*-algebra A. Some consequences about its Lie algebra, the algebra of Lie triple derivations of A, Ltder(A), are obtained. For a topologically simple A, in the infinite-dimensional case we have Ltaut(A)0 = Aut(A) implying Ltder(A) = Der(A). In the finite-dimensional case Ltaut(A)0 is a direct product of Aut(A) and a certain subgroup of Lie derivations δ from A to its center, annihilating commutators.
引用
收藏
页码:1219 / 1226
页数:8
相关论文
共 50 条