Exact Solutions of Discrete Complex Cubic Ginzburg-Landau Equation and Their Linear Stability

被引:0
|
作者
张金良 [1 ]
刘治国 [1 ]
机构
[1] School of Mathematics and Statistics,Henan University of Science and Techonology
关键词
discrete complex cubic Ginzburg-Landau equation; homogeneous balance principle; G’/G-expansion method; exact solution; linear stability;
D O I
暂无
中图分类号
O411.1 [数学物理方法]; O175 [微分方程、积分方程];
学科分类号
0701 ; 070104 ;
摘要
The discrete complex cubic Ginzburg-Landau equation is an important model to describe a number of physical systems such as Taylor and frustrated vortices in hydrodynamics and semiconductor laser arrays in optics.In this paper,the exact solutions of the discrete complex cubic Ginzburg-Landau equation are derived using homogeneous balance principle and the G’ jG-expansion method,and the linear stability of exact solutions is discussed.
引用
收藏
页码:1111 / 1118
页数:8
相关论文
共 50 条
  • [1] Exact Solutions of Discrete Complex Cubic Ginzburg-Landau Equation and Their Linear Stability
    Zhang Jin-Liang
    Liu Zhi-Guo
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (06) : 1111 - 1118
  • [2] Exact solutions to complex Ginzburg-Landau equation
    Liu, Yang
    Chen, Shuangqing
    Wei, Lixin
    Guan, Bing
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (02):
  • [3] EXACT SOLUTIONS FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Qi, Peng
    Wu, Dongsheng
    Gao, Cuiyun
    Shao, Hui
    [J]. ICEIS 2011: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 4, 2011, : 675 - 677
  • [4] Exact localized and periodic solutions of the discrete complex Ginzburg-Landau equation
    Maruno, K
    Ankiewicz, A
    Akhmediev, N
    [J]. OPTICS COMMUNICATIONS, 2003, 221 (1-3) : 199 - 209
  • [5] Soliton dynamics based on exact solutions of conformable fractional discrete complex cubic Ginzburg-Landau equation
    Fang, Jia-Jie
    Mou, Da-Sheng
    Wang, Yue-Yue
    Zhang, Hui-Cong
    Dai, Chao-Qing
    Chen, Yi-Xiang
    [J]. RESULTS IN PHYSICS, 2021, 20
  • [6] Modulational instability and exact solutions of the discrete cubic-quintic Ginzburg-Landau equation
    Murali, R.
    Porsezian, K.
    Kofane, T. C.
    Mohamadou, A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (16)
  • [7] Hole solutions in the cubic complex Ginzburg-Landau equation versus holes in the cubic-quintic complex Ginzburg-Landau equation
    Brand, Helmut R.
    Descalzi, Orazio
    Cisternas, Jaime
    [J]. NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS, 2007, 913 : 133 - +
  • [8] Quasiperiodic solutions for the cubic complex Ginzburg-Landau equation
    Cong, Hongzi
    Liu, Jianjun
    Yuan, Xiaoping
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (06)
  • [9] On exact solutions of modified complex Ginzburg-Landau equation
    Yomba, E
    Kofané, TC
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1999, 125 (1-2) : 105 - 122
  • [10] Exact periodic solutions of the complex Ginzburg-Landau equation
    Porubov, AV
    Velarde, MG
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) : 884 - 896