Hollow carbon microbox from acetylacetone as anode material for sodium-ion batteries

被引:8
|
作者
Tianyun Qiu [1 ]
Wanwan Hong [1 ]
Lin Li [1 ]
Yu Zhang [1 ]
Peng Cai [1 ]
Cheng Liu [1 ]
Jiayang Li [1 ]
Guoqiang Zou [1 ]
Hongshuai Hou [1 ]
Xiaobo Ji [1 ]
机构
[1] Hunan Province Key Laboratory of Chemical Power Source, State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TB33 [复合材料]; TM912 [蓄电池];
学科分类号
0805 ; 080502 ; 0808 ;
摘要
Carbon-based materials have attracted much interest as one of the promising anodes for sodium-ion batteries. However, low utilization of electrolyte and slow ion-transfer rate during electrochemical process hinder the further application of traditional bulk carbon. In order to enhance the diffusion kinetics and maintain the reversibility, hierarchical hollow carbon microbox was successfully prepared through a tunable bottom-up self-template routine for sodium-ion batteries. During annealing process, the morphology construction and activation happened synchronously. Based on that, a range of cross-linked porous nanosheet and hollow microbox were attained by manipulating reactant condition. The generation of texture and physical property are analyzed and are established linkages related to the electrochemical behavior. As results depicted in kinetic exploration and simulation based on cyclic voltammetry, the surfacecontrolled electrochemical behavior gradually turns to be the diffusion-controlled behavior as the hollow microbox evolves to porous nanosheet. The probable reason is that the rational microstructure/texture design leads to the accelerated diffusion kinetic procedure and the reduced concentration difference polarization. Sodium storage mechanism was deduced as reversible binding of Na-ions with local defects,including vacancies on sp2 graphitic layers, at the edges of flakes and other structural defects instead of intercalation. Bestowed by the morphology design, the broad pore width distribution, abundant defects/active sites and surface functionality, hollow microbox electrode delivers great electrochemical performances. This work is expected to propose a novel and effective strategy to prepare tunable hierarchical hollow carbon microbox and induce the fast kinetic of carbon anode material.
引用
收藏
页码:293 / 302
页数:10
相关论文
共 50 条
  • [1] Hollow carbon microbox from acetylacetone as anode material for sodium-ion batteries
    Qiu, Tianyun
    Hong, Wanwan
    Li, Lin
    Zhang, Yu
    Cai, Peng
    Liu, Cheng
    Li, Jiayang
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    JOURNAL OF ENERGY CHEMISTRY, 2020, 51 : 293 - 302
  • [2] The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries
    Tan, Suchong
    Yang, Han
    Zhang, Zhen
    Xu, Xiangyu
    Xu, Yuanyuan
    Zhou, Jian
    Zhou, Xinchi
    Pan, Zhengdao
    Rao, Xingyou
    Gu, Yudong
    Wang, Zhoulu
    Wu, Yutong
    Liu, Xiang
    Zhang, Yi
    MOLECULES, 2023, 28 (07):
  • [3] Hollow bismuth ferrite combined graphene as advanced anode material for sodium-ion batteries
    Xuli Ding
    Yi Liu
    Progress in Natural Science:Materials International, 2020, 30 (02) : 153 - 159
  • [4] Hollow bismuth ferrite combined graphene as advanced anode material for sodium-ion batteries
    Ding, Xuli
    Liu, Yi
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2020, 30 (02) : 153 - 159
  • [5] P-doped Hard Carbon as Anode Material for Sodium-ion Batteries
    Hakim, Charifa
    Asfaw, Habtom Desta
    Dahbi, Mouad
    Brandell, Daniel
    Edstrom, Kristina
    Younesi, Reza
    Saadoune, Ismael
    PROCEEDINGS OF 2019 7TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2019, : 754 - 756
  • [6] Hard carbon/graphene microfibers as a superior anode material for sodium-ion batteries
    Cao, Hailiang
    Han, Zhaohui
    Qin, Chen
    Hou, Ying
    Yang, Liangtao
    Wang, Jun
    Meng, Liang
    Guo, Junjie
    JOURNAL OF POWER SOURCES, 2024, 622
  • [7] Porous Hard Carbon Derived from Walnut Shell as an Anode Material for Sodium-Ion Batteries
    Sensen Zhang
    Ying Li
    Min Li
    JOM, 2018, 70 : 1387 - 1391
  • [8] Porous Hard Carbon Derived from Walnut Shell as an Anode Material for Sodium-Ion Batteries
    Zhang, Sensen
    Li, Ying
    Li, Min
    JOM, 2018, 70 (08) : 1387 - 1391
  • [9] Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries
    Han, Haixia
    Chen, Xiaoyang
    Qian, Jiangfeng
    Zhong, Faping
    Feng, Xiangming
    Chen, Weihua
    Ai, Xinping
    Yang, Hanxi
    Cao, Yuliang
    NANOSCALE, 2019, 11 (45) : 21999 - 22005
  • [10] Carbon nanoflakes as a promising anode for sodium-ion batteries
    Zhu, Xiaocui
    Savilov, S., V
    Ni, Jiangfeng
    Li, Liang
    FUNCTIONAL MATERIALS LETTERS, 2018, 11 (06)