Computing coefficients of wavelet series by Mobius inversion formula

被引:0
|
作者
陈兆斗
陈难先
机构
[1] Beijing 100083
[2] Beijing University of Science and Technology
[3] China
[4] Department of Mathematics and Mechanics
[5] Institute for Applied Physics
基金
中国国家自然科学基金;
关键词
Mobius inversion formula; AFT; scaling function; wavelet orthonormal basis;
D O I
暂无
中图分类号
O241 [数值分析];
学科分类号
070102 ;
摘要
A new algorithm different from Mallat algorithm for computing coefficients of wavelet series is presented, which is an extension of arithmetic Fourier transform (AFT) algorithm for computing the coefficients of Fourier series and is named arithmetic wavelet transform (AWT).
引用
收藏
页码:37 / 45
页数:9
相关论文
共 50 条
  • [1] Computing coefficients of wavelet series by Mobius inversion formula
    Chen, ZD
    Chen, NX
    [J]. PROGRESS IN NATURAL SCIENCE, 1997, 7 (02) : 163 - 171
  • [2] Möbius inversion formula for monoids with zero
    Laurent Poinsot
    Gérard H. E. Duchamp
    Christophe Tollu
    [J]. Semigroup Forum, 2010, 81 : 446 - 460
  • [3] A Combinatorial Method to Introduce Mbius Inversion Formula and Mbius Function
    陈难先
    [J]. Science Bulletin, 1993, (01) : 27 - 31
  • [4] A series inversion formula.
    Titchmarsh, E. C.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1927, 26 : 1 - 11
  • [5] Inversion Formula for the Wavelet Transform on Abelian Group
    Pandey, C. P.
    Moungkang, Khetjing
    Singh, Sunil Kumar
    Dixit, M. M.
    Ado, Mopi
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
  • [6] An asymptotic formula for some wavelet series
    Reyes, NN
    [J]. JOURNAL OF APPROXIMATION THEORY, 1997, 89 (01) : 89 - 95
  • [7] Time series analysis with wavelet coefficients
    Masuda, N
    Okabe, Y
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2001, 18 (01) : 131 - 160
  • [8] Time series analysis with wavelet coefficients
    Naoki Masuda
    Yasunori Okabe
    [J]. Japan Journal of Industrial and Applied Mathematics, 2001, 18 : 131 - 160
  • [9] A simplified formula of Laplace inversion based on wavelet theory
    Wang, JZ
    Gao, HJ
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2005, 21 (10): : 527 - 530
  • [10] An exact formula for a Lambert series associated to a cusp form and the Möbius function
    Abhishek Juyal
    Bibekananda Maji
    Sumukha Sathyanarayana
    [J]. The Ramanujan Journal, 2022, 57 : 769 - 784