This paper investigates a simple step-stress accelerated lifetime test(SSALT) model for the inferential analysis of exponential competing risks data. A generalized type-I hybrid censoring scheme is employed to improve the efficiency and controllability of the test. Firstly, the MLEs for parameters are established based on the cumulative exposure model(CEM). Then the conditional moment generating function(MGF) for unknown parameters is set up using conditional expectation and multiple integral techniques. Thirdly, confidence intervals(CIs) are constructed by the exact MGF-based method, the approximate normality-based method, and the bias-corrected and accelerated(BCa) percentile bootstrap method. Finally, we present simulation studies and an illustrative example to compare the performances of different methods.
机构:
Beijing Jiaotong Univ, Sch Math & Stat, Beijing, Peoples R ChinaBeijing Jiaotong Univ, Sch Math & Stat, Beijing, Peoples R China
Wang, Xinjing
Ye, Tianrui
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC USABeijing Jiaotong Univ, Sch Math & Stat, Beijing, Peoples R China
Ye, Tianrui
Gui, Wenhao
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Jiaotong Univ, Sch Math & Stat, Beijing, Peoples R China
Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R ChinaBeijing Jiaotong Univ, Sch Math & Stat, Beijing, Peoples R China
机构:
Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi ArabiaPrincess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
Alotaibi, Refah
Almetwally, Ehab M.
论文数: 0引用数: 0
h-index: 0
机构:
Imam Mohammad Ibn Saud Islamic Univ IMSIU, Fac Sci, Dept Math & Stat, Riyadh 11432, Saudi ArabiaPrincess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
Almetwally, Ehab M.
Ghosh, Indranil
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Math & Stat, Wilmington, NC 28403 USAPrincess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia