Global stability analysis of a ratio-dependent predator-prey system

被引:0
|
作者
鲁铁军
王美娟
刘妍
机构
[1] College of Science University of Shanghai for Science and Technology
[2] P.R.China
[3] Shanghai 200093
关键词
ratio-dependent; global asymptotic stability; functional response; Hopf bifurcation;
D O I
暂无
中图分类号
O175.13 [稳定性理论];
学科分类号
070104 ;
摘要
A ratio dependent predator-prey system with Holling typeⅢfunctional response is considered.A sufficient condition of the global asymptotic stability for the positive equilibrium and existence of the limit cycle are given by studying locally asymp- totic stability of the positive equilibrium.The condition under which positive equilibrium is not a hyperbolic equilibrium is investigated using Hopf bifurcation.
引用
收藏
页码:495 / 500
页数:6
相关论文
共 50 条
  • [1] Global stability analysis of a ratio-dependent predator-prey system
    Tie-jun Lu
    Mei-juan Wang
    Yan Liu
    [J]. Applied Mathematics and Mechanics, 2008, 29 : 495 - 500
  • [2] Global stability analysis of a ratio-dependent predator-prey system
    Lu Tie-jun
    Wang Mei-juan
    Liu Yan
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (04) : 495 - 500
  • [3] Global qualitative analysis of a ratio-dependent predator-prey system
    Kuang, Y
    Beretta, E
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 36 (04) : 389 - 406
  • [4] ANALYSIS OF STABILITY FOR A DISCRETE RATIO-DEPENDENT PREDATOR-PREY SYSTEM
    Chen, Guangye
    Teng, Zhidong
    Hu, Zengyun
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2011, 42 (01): : 1 - 26
  • [5] Analysis of stability for a discrete ratio-dependent predator-prey system
    Guangye Chen
    Zhidong Teng
    Zengyun Hu
    [J]. Indian Journal of Pure and Applied Mathematics, 2011, 42 : 1 - 26
  • [6] Global asymptotic stability of a ratio-dependent predator-prey system with diffusion
    Fan, YH
    Li, WT
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 188 (02) : 205 - 227
  • [7] Global dynamics of a ratio-dependent predator-prey system
    Xiao, DM
    Ruan, SG
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2001, 43 (03) : 268 - 290
  • [8] Global dynamics of a ratio-dependent predator-prey system
    Dongmei Xiao
    Shigui Ruan
    [J]. Journal of Mathematical Biology, 2001, 43 : 268 - 290
  • [9] Stability Analysis of a Ratio-Dependent Predator-Prey Model
    Yao, Pei
    Wang, Zuocheng
    Wang, Lingshu
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022
  • [10] Global stability in a delayed ratio-dependent predator-prey system with feedback controls
    Wang, Changyou
    Jia, Lili
    Li, Linrui
    Wei, Wei
    [J]. IAENG International Journal of Applied Mathematics, 2020, 50 (03) : 690 - 698