Lifting scheme of symmetric tight wavelets frames

被引:0
|
作者
ZHUANG BoJin
机构
基金
中国国家自然科学基金;
关键词
lifting scheme; tight frame; wavelet transform;
D O I
暂无
中图分类号
TN911 [通信理论];
学科分类号
081002 ;
摘要
This paper proposes a method to realize the lifting scheme of tight frame wavelet filters.As for 4-channel tight frame wavelet filter,the tight frame transforms’ ma-trix is 2×4,but the lifting scheme transforms’ matrix must be 4×4.And in the case of 3-channel tight frame wavelet filter,the transforms’ matrix is 2×3,but the lifting scheme transforms’ matrix must be 3×3.In order to solve this problem,we intro-duce two concepts:transferred polyphase matrix for 4-channel filters and trans-ferred unitary matrix for 3-channel filters.The transferred polyphase matrix is sym-metric/antisymmetric.Thus,we use this advantage to realize the lifting scheme.
引用
收藏
页码:1117 / 1124
页数:8
相关论文
共 50 条
  • [1] Lifting scheme of symmetric tight wavelets frames
    Zhuang BoJin
    Yuan WeiTao
    Peng LiZhong
    [J]. SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2008, 51 (08): : 1117 - 1124
  • [2] Lifting scheme of symmetric tight wavelets frames
    BoJin Zhuang
    WeiTao Yuan
    LiZhong Peng
    [J]. Science in China Series F: Information Sciences, 2008, 51
  • [3] Tight frames of multidimensional wavelets
    Marcin Bownik
    [J]. Journal of Fourier Analysis and Applications, 1997, 3 : 525 - 542
  • [4] Tight frames of multidimensional wavelets
    Bownik, M
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (05) : 525 - 542
  • [5] Parametric wavelets:: Tight frames class
    Stefánoiu, D
    [J]. SYSTEM STRUCTURE AND CONTROL 1997, 1998, : 135 - 141
  • [6] Construction of symmetric orthogonal bases of wavelets and tight wavelet frames with integer dilation factor
    Petukhov, A
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (02) : 198 - 210
  • [7] Nearly Tight Frames of Spin Wavelets on the Sphere
    Daryl Geller
    Azita Mayeli
    [J]. Sampling Theory in Signal and Image Processing, 2010, 9 (1-3): : 25 - 57
  • [8] TIGHT FRAMES OF COMPACTLY SUPPORTED AFFINE WAVELETS
    LAWTON, WM
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (08) : 1898 - 1901
  • [9] Symmetric wavelets dyadic sibling and dual frames
    Abdelnour, Farras
    [J]. SIGNAL PROCESSING, 2012, 92 (05) : 1216 - 1229
  • [10] Symmetric and antisymmetric tight wavelet frames
    Goh, Say Song
    Lim, Zhi Yuan
    Shen, Zuowei
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (03) : 411 - 421