Existence and bifurcation of solutions for a double coupled system of Schrdinger equations

被引:0
|
作者
TIAN RuShun [1 ]
ZHANG ZhiTao [1 ]
机构
[1] Academy of Mathematics and Systems Science, and HUA Loo-Keng Key Laboratory of Mathematics,Chinese Academy of Sciences
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
bifurcation; system of Schr¨odinger equations; positive solution; synchronized solution branch;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
Consider the following system of double coupled Schr¨odinger equations arising from Bose-Einstein condensates etc.,-△u+u=μ1u3+βuv2-κv,-△v+v=μ2v3+βu2v-κu,u≠0,v≠0 and u,v∈H1(RN),whereμ1,μ2are positive and fixed;κandβare linear and nonlinear coupling parameters respectively.We first use critical point theory and Liouville type theorem to prove some existence and nonexistence results on the positive solutions of this system.Then using the positive and non-degenerate solution to the scalar equation-△ω+ω=ω3,ω∈H1r(RN),we construct a synchronized solution branch to prove that forβin certain range and fixed,there exist a series of bifurcations in product space R×H1r(RN)×H1r(RN)with parameter κ.
引用
收藏
页码:1607 / 1620
页数:14
相关论文
共 50 条