On the Number of Limit Cycles of a Z4-equivariant Quintic Near-Hamiltonian System

被引:0
|
作者
Xian Bo SUN [1 ]
Mao An HAN [2 ]
机构
[1] Department of Applied Mathematics, Guangxi University of Finance and Economics
[2] The Institute of Mathematics, Shanghai Normal University
基金
中国国家自然科学基金;
关键词
Limit cycle; near-Hamiltonian system; heteroclinic loop; Z4-equivariance; Hopf bifurcation;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper, we study the number of limit cycles of a near-Hamiltonian system having Z4-equivariant quintic perturbations. Using the methods of Hopf and heteroclinic bifurcation theory, we find that the perturbed system can have 28 limit cycles, and its location is also given. The main result can be used to improve the lower bound of the maximal number of limit cycles for some polynomial systems in a previous work, which is the main motivation of the present paper.
引用
收藏
页码:1805 / 1824
页数:20
相关论文
共 50 条
  • [1] On the number of limit cycles of a Z4-equivariant quintic near-Hamiltonian system
    Xian Bo Sun
    Mao An Han
    [J]. Acta Mathematica Sinica, English Series, 2015, 31 : 1805 - 1824
  • [2] On the Number of Limit Cycles of a Z4-equivariant Quintic Near-Hamiltonian System
    Sun, Xian Bo
    Han, Mao An
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (11) : 1805 - 1824
  • [3] Limit Cycles Bifurcated from Some Z4-Equivariant Quintic Near-Hamiltonian Systems
    Qu, Simin
    Tang, Cangxin
    Huang, Fengli
    Sun, Xianbo
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [4] On the number of limit cycles of a Z4-equivariant quintic polynomial system
    Xu, Weijiao
    Han, Maoan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (10) : 3022 - 3034
  • [5] On the limit cycles of a Hamiltonian under Z4-equivariant quintic perturbation
    Wu, Yuhai
    Tian, Lixin
    Hu, Yingjing
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 33 (01) : 298 - 307
  • [6] SMALL LIMIT CYCLES BIFURCATING FROM Z4-EQUIVARIANT NEAR-HAMILTONIAN SYSTEM OF DEGREES 9 AND 7
    Sun, Xianbo
    Yang, Junmin
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (11):
  • [7] Limit cycles of a Z3-equivariant near-Hamiltonian system
    Ma, Hongyan
    Han, Maoan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) : 3853 - 3871
  • [8] Center, limit cycles and isochronous center of a Z4-equivariant quintic system
    Chao Xiong Du
    Hei Long Mi
    Yi Rong Liu
    [J]. Acta Mathematica Sinica, English Series, 2010, 26 : 1183 - 1196
  • [9] Center, Limit Cycles and Isochronous Center of a Z4-equivariant Quintic System
    Chao Xiong DU~1) Department of Hu’nan Shaoyang University
    [J]. Acta Mathematica Sinica,English Series, 2010, 26 (06) : 1183 - 1196
  • [10] The number and distributions of limit cycles for a class of quintic near-Hamiltonian systems
    Zang, Hong
    Han, Maoan
    Zhang, Tonghua
    Tade, M. O.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (10-11) : 1577 - 1594