具有导子的Lie-Yamaguti代数

被引:2
|
作者
郭双建
机构
[1] 贵州财经大学数统学院
关键词
Lie-Yamaguti代数; 导子; 上同调; 中心扩张; 形变;
D O I
暂无
中图分类号
O152.5 [李群];
学科分类号
摘要
本文研究具有导子的Lie-Yamaguti代数,称之为LieYDer对.首先给出LieYDer对的上同调.其次,研究LieYDer对的中心扩张.最后,根据其上同调考虑LieYDer对的形变.
引用
收藏
页码:547 / 556
页数:10
相关论文
共 10 条
  • [1] Central Extensions and Deformations of Lie Triple Systems with a Derivation
    Shuangjian GUO
    [J]. JournalofMathematicalResearchwithApplications, 2022, 42 (02) : 189 - 198
  • [2] 形变理论综述(一):代数结构形变的具体公式(英文)
    管艾
    Andrey Lazarev
    生云鹤
    唐荣
    [J]. 数学进展, 2020, 49 (03) : 257 - 277
  • [3] Rong Tang,Yaël Frégier,Yunhe Sheng.Cohomologies of a Lie algebra with a derivation and applications[J].Journal of Algebra,2019
  • [4] Tao Zhang,Juan Li.Deformations and extensions of Lie–Yamaguti algebras[J].Linear and Multilinear Algebra,2015
  • [5] On an algorithm for finding derivations of Lie algebras[J].Proyecciones (Antofagasta),2012
  • [6] Jean-Louis Loday.On the operad of associative algebras with derivation[J].Georgian Mathematical Journal,2010
  • [7] Benito P,Elduque A,Martin-Herce F.Irreducible Lie-Yamaguti algebras[J].Journal of pure and applied algebra,2009
  • [8] Theodore Voronov.Higher derived brackets and homotopy algebras[J].Journal of Pure and Applied Algebra,2005
  • [9] Michael K. Kinyon,Alan Weinstein.Leibniz Algebras, Courant Algebroids, and Multiplications on Reductive Homogeneous Spaces[J].American Journal of Mathematics,2001
  • [10] Kiyosi Yamaguti.On the Lie Triple System and its Generalization[J].Journal of Science of the Hiroshima University, Series A (Mathematics, Physics, Chemistry),1958