Multiple solutions for a class of nonlinear elliptic equations on the Sierpinski gasket

被引:0
|
作者
HU JiaxinDepartment of Mathematical Sciences
机构
关键词
Sierpinski gasket; energy form; Laplacian operator; eigenvalue problem; genus; weak solution;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
This paper investigates a class of nonlinear elliptic equations on a fractal domain. We establish a strong Sobolev-type inequality which leads to the existence of multiple non-trivial solutions of △u+ c(x)u = f(x, u), with zero Dirichlet boundary conditions on the Sierpihski gasket. Our existence results do not require any growth conditions of f(x,t) in t, in contrast to the classical theory of elliptic equations on smooth domains.
引用
收藏
页码:772 / 786
页数:15
相关论文
共 50 条