The authors study the coincidence theory for pairs of maps from the Torus to the Klein bottle.Reidemeister classes and the Nielsen number are computed,and it is shown that any given pair of maps satisfies the Wecken property.The 1-parameter Wecken property is studied and a partial negative answer is derived.That is for all pairs of coincidence free maps a countable family of pairs of maps in the homotopy class is constructed such that no two members may be joined by a coincidence free homotopy.
机构:
Univ Sao Paulo, IME, Dept Matemat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, BrazilUniv Sao Paulo, IME, Dept Matemat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
Goncalves, Daciberg Lima
Guaschi, John
论文数: 0引用数: 0
h-index: 0
机构:
Normandie Univ, CNRS, UNICAEN, Lab Math Nicolas Oresme UMR CNRS 6139, F-14000 Caen, FranceUniv Sao Paulo, IME, Dept Matemat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
Guaschi, John
Laass, Vinicius Casteluber
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Bahia, IME, Dept Matemat, Av Adhemar Barros S-N, BR-40170110 Salvador, BA, BrazilUniv Sao Paulo, IME, Dept Matemat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil