Stability of Multidimensional Phase Transitions in a Steady van der Waals Flow

被引:0
|
作者
Shuyi ZHANG Department of Mathematics and Physics
机构
关键词
Supersonic flows; Subsonic phase transitions; Euler equations; Multi-dimensional stability;
D O I
暂无
中图分类号
O175.2 [偏微分方程];
学科分类号
摘要
In this paper,the author studies the multidimensional stability of subsonic phase transitions in a steady supersonic flow of van der Waals type.The viscosity cap- illarity criterion(in"Arch.Rat.Mech.Anal.,81(4),1983,301-315")is used to seek physical admissible planar waves.By showing the Lopatinski determinant being non-zero, it is proved that subsonic phase transitions are uniformly stable in the sense of Majda (in"Mem.Amer.Math.Soc.,41(275),1983,1-95")under both one dimensional and multidimensional perturbations.
引用
收藏
页码:223 / 238
页数:16
相关论文
共 50 条
  • [1] Stability of multidimensional phase transitions in a steady van der Waals flow
    Shuyi Zhang
    Chinese Annals of Mathematics, Series B, 2008, 29 : 223 - 238
  • [2] Stability of multidimensional phase transitions in a steady van der Waals flow
    Zhang, Shuyi
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2008, 29 (03) : 223 - 238
  • [3] Existence of multidimensional phase transitions in a steady Van Der Waals flow
    Zhang, Shu-Yi
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2013, 10 (01) : 79 - 97
  • [4] EXISTENCE OF MULTIDIMENSIONAL NON-ISOTHERMAL PHASE TRANSITIONS IN A STEADY VAN DER WAALS FLOW
    Zhang, Shu-Yi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (05) : 2221 - 2239
  • [5] Stability of non-isothermal phase transitions in a steady van der Waals flow
    Zhang, Shu-Yi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (04): : 1161 - 1176
  • [6] Stability of non-isothermal phase transitions in a steady van der Waals flow
    Shu-Yi Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1161 - 1176
  • [7] Existence of multidimensional phase transitions in a non-isothermal van der Waals fluid
    Zhang, Sli-Yi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (09) : 3093 - 3109
  • [8] Stability of multi-dimensional phase transitions in a Van der Waals fluid
    Benzoni-Gavage, S
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (1-2) : 243 - 263
  • [9] Quantum Phase Transitions of Interlayer Excitons in van der Waals Heterostructures
    Deng, Jia-Pei
    Wang, Zi-Wu
    Cui, Yu
    Liu, Yi-Yan
    Ma, Xin-Jun
    Li, Shao-Juan
    Li, Zhi-Qing
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2024, 18 (02):
  • [10] Van der Waals model for phase transitions in thermoresponsive surface films
    McCoy, John D.
    Curro, John G.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (19):