PyCIL: a Python toolbox for class-incremental learning

被引:1
|
作者
Da-Wei ZHOU [1 ]
Fu-Yun WANG [1 ]
Han-Jia YE [1 ]
De-Chuan ZHAN [1 ]
机构
[1] State Key Laboratory for Novel Software Technology, Nanjing University
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论]; TP312.1 [];
学科分类号
081104 ; 0812 ; 081202 ; 0835 ; 1405 ;
摘要
With the rapid development of deep learning, current deep models can learn a fixed number of classes with high performance. However, in our ever-changing world, data often come from the open environment, which is with stream format or available temporarily due to privacy issues. As a result, the classification model should learn new classes incrementally instead of restarting the training process.
引用
收藏
页码:291 / 292
页数:2
相关论文
共 50 条
  • [1] PyCIL: a Python']Python toolbox for class-incremental learning
    Zhou, Da-Wei
    Wang, Fu-Yun
    Ye, Han-Jia
    Zhan, De-Chuan
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (09)
  • [2] PyCIL: a Python toolbox for class-incremental learning
    Da-Wei Zhou
    Fu-Yun Wang
    Han-Jia Ye
    De-Chuan Zhan
    [J]. Science China Information Sciences, 2023, 66
  • [3] Class-Incremental Exemplar Compression for Class-Incremental Learning
    Luo, Zilin
    Liu, Yaoyao
    Schiele, Bernt
    Sun, Qianru
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11371 - 11380
  • [4] CLASS-INCREMENTAL LEARNING WITH REPETITION
    Hemati, Hamed
    Cossu, Andrea
    Carta, Antonio
    Hurtado, Julio
    Pellegrini, Lorenzo
    Bacciu, Davide
    Lomonaco, Vincenzo
    Borth, Damian
    [J]. CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 232, 2023, 232 : 437 - 455
  • [5] Class-Incremental Learning: A Survey
    Zhou, Da-Wei
    Wang, Qi-Wei
    Qi, Zhi-Hong
    Ye, Han-Jia
    Zhan, De-Chuan
    Liu, Ziwei
    [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (12) : 9851 - 9873
  • [6] Federated Class-Incremental Learning
    Dong, Jiahua
    Wang, Lixu
    Fang, Zhen
    Sun, Gan
    Xu, Shichao
    Wang, Xiao
    Zhu, Qi
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 10154 - 10163
  • [7] Is Class-Incremental Enough for Continual Learning?
    Cossu, Andrea
    Graffieti, Gabriele
    Pellegrini, Lorenzo
    Maltoni, Davide
    Bacciu, Davide
    Carta, Antonio
    Lomonaco, Vincenzo
    [J]. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [8] Deep Learning for Class-Incremental Learning: A Survey
    Zhou, Da-Wei
    Wang, Fu-Yun
    Ye, Han-Jia
    Zhan, De-Chuan
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2023, 46 (08): : 1577 - 1605
  • [9] AdvisIL - A Class-Incremental Learning Advisor
    Feillet, Eva
    Petit, Gregoire
    Popescu, Adrian
    Reyboz, Marina
    Hudelot, Celine
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2399 - 2408
  • [10] Class-Incremental Learning with Generative Classifiers
    van de Ven, Gido M.
    Li, Zhe
    Tolias, Andreas S.
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 3606 - 3615