The Blow-up of Solutions for Two-Dimensional Irrotational Compressible Euler Equations

被引:0
|
作者
Hui Cheng YIN
Qin ZHENG
Shu Ze JIN Department of Mathematics
机构
关键词
Lifespan; Commutator method; Nash-Moser iteration;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
For two-dimensional irrotational compressible Euler equations with initial data where thatis a small perturbation from a constant state, we prove that the first-order derivatives of ρ, υ blow-upat the blow-up time, while ρ, υ remain continuous. In particular, in the irrotational case we prove S.Alinhac’s statement.
引用
收藏
页码:217 / 228
页数:12
相关论文
共 50 条
  • [1] The Blow-up of Solutions for Two-Dimensional Irrotational Compressible Euler Equations
    Yin H.C.
    Zheng Q.
    Jin S.Z.
    [J]. Acta Mathematica Sinica, 2001, 17 (2) : 217 - 228
  • [2] The blow-up of solutions for two-dimensional irrotational compressible Euler equations
    Yin, HC
    Zheng, Q
    Jin, SZ
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (02): : 217 - 228
  • [3] On the blow-up phenomena of solutions for the full compressible Euler equations in RN
    Wu, Xinglong
    [J]. NONLINEARITY, 2016, 29 (12) : 3837 - 3856
  • [4] One new blow-up criterion for the two-dimensional full compressible magnetohydrodynamic equations
    Lu, Li
    [J]. AIMS MATHEMATICS, 2023, 8 (07): : 15876 - 15891
  • [5] Global and blow-up solutions for compressible Euler equations with time-dependent damping
    Chen, Shaohua
    Li, Haitong
    Li, Jingyu
    Mei, Ming
    Zhang, Kaijun
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (09) : 5035 - 5077
  • [6] An improved blow-up criterion for smooth solutions of the two-dimensional MHD equations
    Gala, Sadek
    Ragusa, Maria Alessandra
    Ye, Zhuan
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (01) : 279 - 285
  • [7] Blow-up conditions for two dimensional modified Euler-Poisson equations
    Lee, Yongki
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) : 3704 - 3718
  • [8] Blow-up Criteria of Classical Solutions of Three-Dimensional Compressible Magnetohydrodynamic Equations
    Liu, Xin
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2018, 21 (01)
  • [9] Blow-up Criteria of Classical Solutions of Three-Dimensional Compressible Magnetohydrodynamic Equations
    Xin Liu
    [J]. Mathematical Physics, Analysis and Geometry, 2018, 21
  • [10] Instability for axisymmetric blow-up solutions to incompressible Euler equations
    Lafleche, Laurent
    Vasseur, Alexis F.
    Vishik, Misha
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 155 : 140 - 154