Interference Phase of Neutrino Oscillation in Schwarzschild-de Sitter Space-Time

被引:0
|
作者
任军 [1 ]
耿金鹏 [1 ]
机构
[1] School of Science, Hebei University of Technology
关键词
gravitational field; Schwarzschild-de Sitter space time; neutrino interference phase; cosmological constant; geodesic line;
D O I
暂无
中图分类号
O572.321 [];
学科分类号
070202 ;
摘要
We study the mass neutrino interference phase in Schwarzschild-de Sitter space time along the null trajectoryand the geodesic line and obtain the effects of cosmological constant A on the neutrino oscillation. Firstly, in the highenergy limit, we find that the phase along the geodesic keeps the double of that along the null. Secondly, we calculatethe phase on the condition that the cosmological constant, A, is a small quantity. The correction of the phase due to λ isgiven. Finally, we calculate the proper oscillation length in Sehwarzschild-de Sitter space-time, which increases becauseof the existence of λ, compared with the result in Schwarzsehild space-time. All of our results can be reduced to thosein Schwarzschild space-time as λ approaches to zero.
引用
收藏
页码:665 / 668
页数:4
相关论文
共 50 条
  • [1] Interference Phase of Neutrino Oscillation in Schwarzschild-de Sitter Space-Time
    Ren Jun
    Geng Jin-Peng
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (04) : 665 - 668
  • [2] Neutrino Oscillation in a Curved Schwarzschild-de Sitter Space-Time
    Mebarki, O.
    Mebarki, N.
    [J]. 1ST FRANCO-ALGERIAN WORKSHOP ON NEUTRINO PHYSICS, 2015, 593
  • [3] The Structure of the Extreme Schwarzschild-de Sitter Space-time
    J. Podolsky
    [J]. General Relativity and Gravitation, 1999, 31 : 1703 - 1725
  • [4] Temperature and entropy of Schwarzschild-de Sitter space-time
    Shankaranarayanan, S
    [J]. PHYSICAL REVIEW D, 2003, 67 (08)
  • [5] Finslerian analogue of the Schwarzschild-de Sitter space-time
    Manjunatha, H. M.
    Narasimhamurthy, S. K.
    Srivastava, S. K.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (03):
  • [6] Spinning particles in Schwarzschild-de Sitter space-time
    Mortazavimanesh, M.
    Mohseni, Morteza
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2009, 41 (11) : 2697 - 2706
  • [7] The structure of the extreme Schwarzschild-de Sitter space-time
    Podolsky, J
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1999, 31 (11) : 1703 - 1725
  • [8] Solar system effects in Schwarzschild-de Sitter space-time
    Kagramanova, V
    Kunz, J
    Lämmerzahl, C
    [J]. PHYSICS LETTERS B, 2006, 634 (5-6) : 465 - 470
  • [9] Gravitational deflection of light in the Schwarzschild-de Sitter space-time
    Bhadra, Arunava
    Biswas, Swarnadeep
    Sarkar, Kabita
    [J]. PHYSICAL REVIEW D, 2010, 82 (06):
  • [10] Black hole and cosmic entropy for schwarzschild-de sitter space-time
    Yueqin W.
    Lichun Z.
    Ren Z.
    [J]. International Journal of Theoretical Physics, 2001, 40 (5) : 1001 - 1008