ANALYTICAL SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

被引:0
|
作者
胡建兰
张汉林
机构
[1] P.R.China
[2] Beijing Polytechnic University
[3] Beijing Polytechnic University Beijing 100022
[4] Institute of Applied Science
关键词
nonlinear physical model; ansatz method; analytical solution;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
The following partial differential equations are studied: generalized fifth-order KdV equation,water wave equation, Kupershmidt equation, couples KdV equation. The analytical solutions to these problems via using various ansatzes by introducing a second-order ordinary differential equation are found out.
引用
收藏
页码:614 / 620
页数:7
相关论文
共 50 条
  • [1] Analytical solutions for some nonlinear evolution equations
    Hu Jian-lan
    Zhang Han-lin
    Applied Mathematics and Mechanics, 2003, 24 (5) : 614 - 620
  • [2] Analytical solutions for some nonlinear evolution equations
    Hu, JL
    Zhang, HL
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2003, 24 (05) : 614 - 620
  • [3] Classes of new analytical soliton solutions to some nonlinear evolution equations
    Cao, Yan
    Dhahad, Hayder A.
    Hussen, Hasanen M.
    Alamri, Sagr
    Rajhi, Ali A.
    Anqi, Ali E.
    Nisar, Kottakkaran Sooppy
    Mohamed, Roshan Noor
    RESULTS IN PHYSICS, 2021, 31
  • [4] Solitons solutions for some nonlinear evolution equations
    Jia, Huabing
    Xu, Wei
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) : 1678 - 1687
  • [5] Solitary solutions of some nonlinear evolution equations
    Huber, A
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 166 (02) : 464 - 474
  • [6] Exact Solutions of Some Nonlinear Evolution Equations
    Rosales, Rodoljo R.
    1600, (59):
  • [7] DECAY OF SOLUTIONS OF SOME NONLINEAR EVOLUTION EQUATIONS
    NAKAO, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 60 (02) : 542 - 549
  • [8] The presentation of explicit analytical solutions of a class of nonlinear evolution equations
    Feng Jin-Shun
    Guo Ming-Pu
    Yuan Deyou
    CHAOS SOLITONS & FRACTALS, 2009, 41 (05) : 2422 - 2428
  • [9] On the peakon solutions of some stochastic nonlinear evolution equations
    Yokus, Asif
    Taskesen, Hatice
    Alaloush, Mohanad
    Demirdag, Betul Deniz
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (10)
  • [10] Hyperbolic and trigonometric solutions for some nonlinear evolution equations
    Elboree, Mohammed K.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (11) : 4085 - 4096