A global empirical model for mapping zenith wet delays onto precipitable water vapor using GGOS Atmosphere data

被引:0
|
作者
YAO YiBin [1 ,2 ]
XU ChaoQian [1 ]
ZHANG Bao [1 ]
CAO Na [1 ]
机构
[1] School of Geodesy and Geomatics, Wuhan University
[2] Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
GPS meteorology; zenith wet delay; GWMT model; GWMT-G model; GGOS;
D O I
暂无
中图分类号
P412 [探测技术与方法]; P426 [水汽、凝结和降水];
学科分类号
0706 ; 070601 ;
摘要
The importance of water vapor in research of global climate change and weather forecast cannot be over emphasized; therefore substantial efforts have been made in exploring the optimal methods to measure water vapor. It is well-established that with a conversion factor, zenith wet delays can be mapped onto precipitable water vapor(PWV). However, the determination of the exact conversion factor depends heavily on the accurate calculation of a key variable, weighted mean temperature of the troposphere(T;). As a critical parameter in Global Positioning System(GPS) meteorology, T;has recently been modeled into a global grid known as GWMT. The GWMT;odel only requires the location and the day of year to calculate T;. Despite the advantages that the GWMT;odel offers, anomalies still exist in oceanic areas due to low sampling resolution. In this study, we refine the GWMT;odel by incorporating the global T;grid from Global Geodetic Observing System(GGOS) and obtain an improved model, GWMT-G. The results indicate that the GWMT-G model successfully addresses the anomaly in oceanic areas in the GWMT;odel and significantly improves the accuracy of T;in other regions.
引用
收藏
页码:1361 / 1369
页数:9
相关论文
共 21 条
  • [1] A global empirical model for mapping zenith wet delays onto precipitable water vapor using GGOS Atmosphere data
    YiBin Yao
    ChaoQian Xu
    Bao Zhang
    Na Cao
    [J]. Science China Earth Sciences, 2015, 58 : 1361 - 1369
  • [2] A global empirical model for mapping zenith wet delays onto precipitable water vapor using GGOS Atmosphere data
    Yao YiBin
    Xu ChaoQian
    Zhang Bao
    Cao Na
    [J]. SCIENCE CHINA-EARTH SCIENCES, 2015, 58 (08) : 1361 - 1369
  • [3] Global empirical model for mapping zenith wet delays onto precipitable water
    Yi Bin Yao
    Bao Zhang
    Shun Qiang Yue
    Chao Qian Xu
    Wen Fei Peng
    [J]. Journal of Geodesy, 2013, 87 : 439 - 448
  • [4] Global empirical model for mapping zenith wet delays onto precipitable water
    Yao, Yi Bin
    Zhang, Bao
    Yue, Shun Qiang
    Xu, Chao Qian
    Peng, Wen Fei
    [J]. JOURNAL OF GEODESY, 2013, 87 (05) : 439 - 448
  • [5] Realization of global empirical model for mapping zenith wet delays onto precipitable water using NCEP re-analysis data
    Chen, Peng
    Yao, Wanqiang
    Zhu, Xuejun
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2014, 198 (03) : 1748 - 1757
  • [6] GTm-III: a new global empirical model for mapping zenith wet delays onto precipitable water vapour
    Yao, Yibin
    Xu, Chaoqian
    Zhang, Bao
    Cao, Na
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2014, 197 (01) : 202 - 212
  • [7] GPS METEOROLOGY - MAPPING ZENITH WET DELAYS ONTO PRECIPITABLE WATER
    BEVIS, M
    BUSINGER, S
    CHISWELL, S
    HERRING, TA
    ANTHES, RA
    ROCKEN, C
    WARE, RH
    [J]. JOURNAL OF APPLIED METEOROLOGY, 1994, 33 (03): : 379 - 386
  • [8] Retrieving Precipitable Water Vapor Data Using GPS Zenith Delays and Global Reanalysis Data in China
    Jiang, Peng
    Ye, Shirong
    Chen, Dezhong
    Liu, Yanyan
    Xia, Pengfei
    [J]. REMOTE SENSING, 2016, 8 (05)
  • [9] A Global Conversion Factor Model for Mapping Zenith Total Delay onto Precipitable Water
    Zhao, Qingzhi
    Liu, Kang
    Zhang, Tengxu
    He, Lin
    Shen, Ziyu
    Xiong, Si
    Shi, Yun
    Chen, Lichuan
    Liao, Weiming
    [J]. REMOTE SENSING, 2022, 14 (05)
  • [10] Precipitable water vapor estimation in India from GPS-derived zenith delays using radiosonde data
    Singh, Dinesh
    Ghosh, Jayanta Kumar
    Kashyap, Deepak
    [J]. METEOROLOGY AND ATMOSPHERIC PHYSICS, 2014, 123 (3-4) : 209 - 220