On the Limit Cycles of Quadratic Differential Systems

被引:0
|
作者
Xiang ZHANG Department of Mathematics
机构
关键词
Quadratic differential system; Limit cycle; Ergodicity;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper we give the necessary and sufficient conditions for all finite critical points ofquadratic differential systems to be weak foci, and solve an open problem proposed by Yanqian Ye.
引用
收藏
页码:803 / 816
页数:14
相关论文
共 50 条
  • [2] On the Limit Cycles of Quadratic Differential Systems
    Xiang Zhang
    [J]. Acta Mathematica Sinica, 2002, 18 : 803 - 816
  • [3] ON LIMIT CYCLES OF PIECEWISE DIFFERENTIAL SYSTEMS AND A CLASS OF QUADRATIC SYSTEMS
    Berbache, Aziza
    Anasser, El
    [J]. MATHEMATICA BOHEMICA, 2022,
  • [4] Limit cycles for discontinuous quadratic differential switching systems
    Feng Li
    [J]. Advances in Difference Equations, 2015
  • [5] ALGEBRAIC LIMIT CYCLES FOR QUADRATIC POLYNOMIAL DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Valls, Claudia
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (06): : 2475 - 2485
  • [6] Bifurcating limit cycles in quadratic polynomial differential systems
    Chan, HSY
    Chung, KW
    Qi, DW
    [J]. PHYSICA A, 2000, 288 (1-4): : 417 - 423
  • [7] ALGEBRAIC LIMIT CYCLES ON QUADRATIC POLYNOMIAL DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Valls, Claudia
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (02) : 499 - 512
  • [8] Limit cycles for discontinuous quadratic differential switching systems
    Li, Feng
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [9] Bifurcation of Limit Cycles for a Perturbed Piecewise Quadratic Differential Systems
    Ji, Gui Lin
    Liu, Chang Jian
    Li, Peng Heng
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (03) : 591 - 611
  • [10] Bifurcation of Limit Cycles for a Perturbed Piecewise Quadratic Differential Systems
    Gui Lin Ji
    Chang Jian Liu
    Peng Heng Li
    [J]. Acta Mathematica Sinica, English Series, 2022, 38 : 591 - 611