LOWER BOUNDS FOR TNE FIRST GAP OF EIGENVALUES IN THE SCHRDINGER OPERATOR ON SIMPLE RIEMANNIAN MANIFOLDS

被引:0
|
作者
蔡开仁
机构
关键词
DINGER OPERATOR ON SIMPLE RIEMANNIAN MANIFOLDS; LOWER BOUNDS FOR TNE FIRST GAP OF EIGENVALUES IN THE SCHR;
D O I
10.13548/j.sxzz.1992.01.007
中图分类号
学科分类号
摘要
<正> We give a lower bound for the first gap λ2—λ1 of the twolowerst eigenvalues of the Schr(o|¨)dinger operator-△+W(p) with the Dirichletboundary condition and a strictly convex potential W(p)on M in which M is acompact simple Riemannian manifold with smooth strictly convex boundary (?)MHere a compact Riemannian manifold M is said to be simple if M~(?)M istopologically R2.We prove thatλ2-λ1≥(π2)/(d2)+min{0,-(n-1)K}where d is the diameter of M and-(n-1)K,(K≥0)the lower bound of theRicci curvature of M.This work generalizes the results in the classical Eucli-dean situation due to Singer,Wong and Yau,Yu and Zhong to a kind of curvedRiemannian manifold.
引用
收藏
页码:51 / 60
页数:10
相关论文
empty
未找到相关数据