EXISTENCE OF POSITIVE SOLUTIONS TO QUASI-LINEAR EQUATION INVOLVING CRITICAL SOBOLEV-HARDY EXPONENT

被引:0
|
作者
康东升
机构
[1] Department of Mathematics
[2] South-Central University For Nationalitis
[3] Wuhan 430074
[4] China
基金
中国国家自然科学基金;
关键词
Positive solution; quasi-linear equation; critical Sobolev-Hardy exponent; variational method;
D O I
暂无
中图分类号
O151.2 [线性代数];
学科分类号
070104 ;
摘要
This paper is concerned with the quasi-linear equation with critical Sobolev-Hardy exponentwhere Ω (?) RN(N(?)3) is a smooth bounded domain, 0 ∈ Ω,0<s<p, 1<p< N,p (s) := p(N-s)/N-p is the critical Sobolev-Hardy exponent, λ> 0.p(?) r < p ,p’ := Np/N-p is the critical Sobolev exponent,μ> 0, 0(?)t < p,p(?)q < p (t) =p(N-t)/N-p. The existence of a positive solution is proved by Sobolev-Hardy inequality and variational method.
引用
收藏
页码:639 / 644
页数:6
相关论文
共 50 条