Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial

被引:4
|
作者
丁国文 [1 ]
刘少斌 [1 ]
章海锋 [1 ,2 ]
孔祥鲲 [1 ,3 ]
李海明 [1 ]
李炳祥 [1 ]
刘思源 [1 ]
李海 [2 ]
机构
[1] Key Laboratory of Radar Imaging and Microwave Photonics of Ministry of Education, Nanjing University of Aeronautics and Astronautics
[2] Nanjing Artillery Academy
[3] State Key Laboratory of Millimeter Waves, Southeast University
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
graphene; metamaterial; electromagnetically induced transparency;
D O I
暂无
中图分类号
O441.3 [电磁感应];
学科分类号
0809 ;
摘要
A graphene-based metamaterial with tunable electromagnetically induced transparency(EIT)-like transmission is numerically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect coupling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators.
引用
收藏
页码:538 / 542
页数:5
相关论文
共 50 条
  • [1] Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterialel
    Ding Guo-Wen
    Liu Shao-Bin
    Zhang Hai-Feng
    Kong Xiang-Kun
    Li Hai-Ming
    Li Bing-Xiang
    Liu Si-Yuan
    Li Hai
    [J]. CHINESE PHYSICS B, 2015, 24 (11)
  • [2] Tunable electromagnetically induced transparency based on terahertz graphene metamaterial
    He, Xunjun
    Huang, Yiming
    Yang, Xingyu
    Zhu, Lei
    Wu, Fengmin
    Jiang, Jiuxing
    [J]. RSC ADVANCES, 2017, 7 (64) : 40321 - 40326
  • [3] Tunable terahertz electromagnetically induced transparency based on a complementary graphene metamaterial
    Zhang, Huiyun
    Zhang, Xiaoqiuyan
    Cao, Yanyan
    Zeng, Beibei
    Zhou, Mingdong
    Zhang, Yuping
    [J]. MATERIALS RESEARCH EXPRESS, 2017, 4 (01):
  • [4] Analogue of tunable electromagnetically induced transparency in terahertz metal-graphene metamaterial
    Shu, Chang
    Chen, Qingguo
    Mei, Jinshuo
    Yin, Jinghua
    [J]. MATERIALS RESEARCH EXPRESS, 2019, 6 (05):
  • [5] Graphene-based tunable terahertz electromagnetically induced transparency using metamaterial structure
    Xu, Kai-Da
    Xia, Shengpei
    Cai, Yijun
    Li, Jianxing
    Cui, Jianlei
    Chen, Chengying
    Zhou, Jianmei
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2022, 64 (11) : 1917 - 1922
  • [6] Electromagnetically Induced Transparency-Like Terahertz Graphene Metamaterial With Tunable Carrier Mobility
    Cao, Pengfei
    Li, Yuan
    Wu, Yuyao
    Yuan, Zhengnan
    Li, Shenglin
    Cheng, Lin
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (13) : 14799 - 14806
  • [7] Tunable Electromagnetically Induced Transparency in Asymmetric Graphene-Based Metamaterial at Terahertz Region
    Jiang, Jiuxing
    Cui, Jifei
    Fang, Ruiqian
    Wu, Fengmin
    Yang, Yuqiang
    [J]. INTEGRATED FERROELECTRICS, 2020, 212 (01) : 1 - 8
  • [8] Tunable electromagnetically induced transparency from a superconducting terahertz metamaterial
    Zhang, Caihong
    Wu, Jingbo
    Jin, Biaobing
    Jia, Xiaoqing
    Kang, Lin
    Xu, Weiwei
    Wang, Huabing
    Chen, Jian
    Tonouchi, Masoyoshi
    Wu, Peiheng
    [J]. APPLIED PHYSICS LETTERS, 2017, 110 (24)
  • [9] An actively tunable multifrequency electromagnetically induced transparency in a terahertz metamaterial
    Li, Haiming
    Xu, Zhipeng
    Wang, Hongyang
    Chen, Jianping
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (03)
  • [10] Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial
    Liu, Tingting
    Wang, Huaixing
    Liu, Yong
    Xiao, Longsheng
    Zhou, Chaobiao
    Xu, Chen
    Xiao, Shuyuan
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 104 : 229 - 232