Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury:a characteristic analysis using magnetic resonance imaging
被引:12
|
作者:
Chun-juan Jiang
论文数: 0引用数: 0
h-index: 0
机构:
Department of Radiology,Wuxi Second People’s Hospital Affiliated to Nanjing Medical UniversityDepartment of Radiology,Wuxi Second People’s Hospital Affiliated to Nanjing Medical University
Chun-juan Jiang
[1
]
Zhong-juan Wang
论文数: 0引用数: 0
h-index: 0
机构:
Department of Radiology,Wuxi Second People’s Hospital Affiliated to Nanjing Medical UniversityDepartment of Radiology,Wuxi Second People’s Hospital Affiliated to Nanjing Medical University
Zhong-juan Wang
[1
]
论文数: 引用数:
h-index:
机构:
Yan-jun Zhao
[1
]
Zhui-yang Zhang
论文数: 0引用数: 0
h-index: 0
机构:
Department of Radiology,Wuxi Second People’s Hospital Affiliated to Nanjing Medical UniversityDepartment of Radiology,Wuxi Second People’s Hospital Affiliated to Nanjing Medical University
Zhui-yang Zhang
[1
]
Jing-jing Tao
论文数: 0引用数: 0
h-index: 0
机构:
Department of Radiology,Wuxi Second People’s Hospital Affiliated to Nanjing Medical UniversityDepartment of Radiology,Wuxi Second People’s Hospital Affiliated to Nanjing Medical University
Jing-jing Tao
[1
]
Jian-yong Ma
论文数: 0引用数: 0
h-index: 0
机构:
Department of Radiology,Wuxi Second People’s Hospital Affiliated to Nanjing Medical UniversityDepartment of Radiology,Wuxi Second People’s Hospital Affiliated to Nanjing Medical University
Jian-yong Ma
[1
]
机构:
[1] Department of Radiology,Wuxi Second People’s Hospital Affiliated to Nanjing Medical University
Some in vitro experiments have shown that erythropoietin(EPO) increases resistance to apoptosis and facilitates neuronal survival following cerebral ischemia.However,results from in vivo studies are rarely reported.Perfusion-weighted imaging(PWI) and diffusion-weighted imaging(DWI) have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore,we hypothesized that PWI and DWI could be used to provide imaging evidence in vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion.To validate this hypothesis,we established a rat model of focal cerebral ischemia/reperfusion injury,and treated with intra-cerebroventricular injection of EPO(5,000 U/kg) 20 minutes before injury.Brain tissue in the ischemic injury zone was sampled using MRI-guided localization.The relative area of abnormal tissue,changes in PWI and DWI in the ischemic injury zone,and the number of apoptotic cells based on Td T-mediated d UTP-biotin nick end-labeling(TUNEL) were assessed.Our findings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI,increases cerebral blood volume,and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion.The experiment provides imaging evidence in vivo for EPO treating cerebral ischemia/reperfusion injury.