On Sums of Powers of Odd Integers

被引:1
|
作者
Songbai GUO [1 ,2 ]
Youjian SHEN [1 ]
机构
[1] School of Mathematics and Statistics,Hainan Normal University
[2] School of Mathematics and Physics,University of Science and Technology Beijing
关键词
odd number; sums of powers; binomial theorem; superposition method;
D O I
暂无
中图分类号
O174.14 [多项式理论];
学科分类号
070104 ;
摘要
In this paper,by using superposition method,we aim to show thatn i=1(2i 1)2k 1 is the product of n2and a rational polynomial in n2with degree k 1,and thatn i=1(2i 1)2k is the product of n(2n 1)(2n + 1) and a rational polynomial in(2n 1)(2n + 1) with degree k 1.Moreover,recurrence formulas to compute the coefcients of the corresponding rational polynomials are also obtained.
引用
收藏
页码:666 / 672
页数:7
相关论文
共 50 条
  • [1] On the alternating sums of powers of consecutive odd integers
    Ryoo, C. S.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (06) : 1019 - 1024
  • [2] Powers of integers as sums of consecutive odd numbers
    Junaidu, S. B.
    Laradji, A.
    Umar, A.
    MATHEMATICAL GAZETTE, 2010, 94 (529): : 117 - 119
  • [3] SUMS OF POWERS OF INTEGERS
    COOK, R
    JOURNAL OF NUMBER THEORY, 1979, 11 (04) : 516 - 528
  • [4] SUMS OF POWERS OF INTEGERS
    KLAMKIN, MS
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (08): : 946 - &
  • [5] Sums of powers of integers
    Beardon, AF
    AMERICAN MATHEMATICAL MONTHLY, 1996, 103 (03): : 201 - 213
  • [6] SUMS OF POWERS OF INTEGERS
    Eba, Hunde
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2019, 31 (01) : 66 - 78
  • [7] SUMS OF POWERS OF INTEGERS
    BURROWS, BL
    TALBOT, RF
    AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (07): : 394 - 403
  • [8] On sums of powers of integers
    Shailesh A. Shirali
    Resonance, 2007, 12 (7) : 27 - 43
  • [9] On Sums of Powers of Integers
    Shirali, Shailesh A.
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2007, 12 (07): : 27 - 43
  • [10] A NOTE ON SUMS OF POWERS OF INTEGERS
    CARLITZ, L
    AMERICAN MATHEMATICAL MONTHLY, 1962, 69 (04): : 290 - &