A Logarithmically Improved Regularity Criterion for the Supercritical Quasi-geostrophic Equations in Besov Space

被引:0
|
作者
Sadek GALA [1 ]
机构
[1] Department of Mathematics, University of Mostaganem
关键词
quasi-geostrophic equations; logarithmical regularity criterion; Besov space;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper, we consider the logarithmically improved regularity criterion for the supercritical quasi-geostrophic equation in Besov spaceB,(R~2). The result shows that if θ is a weak solutions satisfiesα∫~T ‖▽θ(·, s) ‖α/α-r B/1+㏑(e+‖▽θ(·, s) ‖~2,ds < ∞ for some 0 < r < α and 0 < α < 1, then θ is regular at t = T. In view of the embedding L~2M~p  B,∞with 2 ≤ p <2 rand 0 ≤ r < 1, we r see that our result extends the results due to [20] and [31].
引用
收藏
页码:679 / 686
页数:8
相关论文
共 50 条