An h-adaptive Discontinuous Galerkin Method for Laminar Compressible Navier-Stokes Equations on Curved Mesh

被引:2
|
作者
Sun Qiang [1 ]
Lyu Hongqiang [1 ]
Wu Yizhao [1 ]
机构
[1] College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics
基金
中国国家自然科学基金;
关键词
h-adaptivity; high-order discontinuous Galerkin methods(DGM); N-S equations; high-order boundary approximation;
D O I
10.16356/j.1005-1120.2016.05.566
中图分类号
O35 [流体力学]; O241.8 [微分方程、积分方程的数值解法];
学科分类号
070102 ; 080103 ; 080704 ;
摘要
An h-adaptive method is developed for high-order discontinuous Galerkin methods(DGM)to solve the laminar compressible Navier-Stokes(N-S)equations on unstructured mesh.The vorticity is regarded as the indicator of adaptivity.The elements where the vorticity is larger than a pre-defined upper limit are refined,and those where the vorticity is smaller than a pre-defined lower limit are coarsened if they have been refined.A high-order geometric approximation of curved boundaries is adopted to ensure the accuracy.Numerical results indicate that highly accurate numerical results can be obtained with the adaptive method at relatively low expense.
引用
收藏
页码:566 / 575
页数:10
相关论文
共 50 条
  • [1] Analysis and development of adjoint-based h-adaptive direct discontinuous Galerkin method for the compressible Navier-Stokes equations
    Cheng, Jian
    Yue, Huiqiang
    Yu, Shengjiao
    Liu, Tiegang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 362 : 305 - 326
  • [2] A MULTILEVEL DISCONTINUOUS GALERKIN METHOD FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Prill, F.
    Lukacova-Medvidova, M.
    Hartmann, R.
    [J]. ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING, 2009, : 91 - 100
  • [3] An anisotropic h-adaptive finite element method for compressible Navier-Stokes equations
    Rachowicz, W
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 146 (3-4) : 231 - 252
  • [4] An h-adaptive local discontinuous Galerkin method for the Navier-Stokes-Korteweg equations
    Tian, Lulu
    Xu, Yan
    Kuerten, J. G. M.
    van der Vegt, J. J. W.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 319 : 242 - 265
  • [5] Discontinuous Galerkin schemes for the compressible Navier-Stokes equations
    Drozo, C
    Borrel, M
    Lerat, A
    [J]. SIXTEENTH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN FLUID DYNAMICS, 1998, 515 : 266 - 271
  • [6] A Symmetric Direct Discontinuous Galerkin Method for the Compressible Navier-Stokes Equations
    Yue, Huiqiang
    Cheng, Jian
    Liu, Tiegang
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 22 (02) : 375 - 392
  • [7] An implicit discontinuous Galerkin method for the unsteady compressible Navier-Stokes equations
    Luo, Hong
    Segawa, Hidehiro
    Visbal, Miguel R.
    [J]. COMPUTERS & FLUIDS, 2012, 53 : 133 - 144
  • [8] A discontinuous Galerkin method for the Navier-Stokes equations
    Lomtev, I
    Karniadakis, GE
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1999, 29 (05) : 587 - 603
  • [9] GMRES Discontinuous Galerkin solution of the compressible Navier-Stokes equations
    Bassi, F
    Rebay, S
    [J]. DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 197 - 208
  • [10] AN ENTROPY STABLE, HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Williams, D. M.
    [J]. MATHEMATICS OF COMPUTATION, 2018, 87 (309) : 95 - 121