A Criterion on the Finite p-Nilpotent Groups

被引:3
|
作者
Xiangyang XU [1 ]
Yangming LI [2 ]
机构
[1] Department of Mathematics,Nanchang Normal University
[2] Department of Mathematics,Guangdong University of Education
基金
中国国家自然科学基金;
关键词
p-nilpotent group; k-th center of a group; s-semipermutable subgroup;
D O I
暂无
中图分类号
O152.1 [有限群论];
学科分类号
摘要
Let G be a finite group. Suppose that H is a subgroup of G. We say that H is s-semipermutable in G if HG;= G;H for any Sylow p-subgroup G;of G with(p, |H|) = 1,where p is a prime dividing the order of G. We give a p-nilpotent criterion of G under the hypotheses that some subgroups of G are s-semipermutable in G. Our result is a generalization of the famous Burnside’s p-nilpotent criterion.
引用
收藏
页码:254 / 258
页数:5
相关论文
共 50 条
  • [1] On finite p-nilpotent groups
    Adolfo Ballester-Bolinches
    Xiuyun Guo
    Yangming Li
    Ning Su
    Monatshefte für Mathematik, 2016, 181 : 63 - 70
  • [2] On finite p-nilpotent groups
    Ballester-Bolinches, Adolfo
    Guo, Xiuyun
    Li, Yangming
    Su, Ning
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (01): : 63 - 70
  • [3] Characterization of p-Nilpotent Groups by Monomials of Finite Groups
    Iiyori, Nobuo
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (05) : 1695 - 1698
  • [4] Outer automorphism groups of finite p-nilpotent groups
    Jin, P
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (09) : 4369 - 4375
  • [5] A characteristic property of finite p-nilpotent groups
    Al-Sharo, KA
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (07) : 2655 - 2657
  • [6] p-Nilpotent Maximal Subgroups in Finite Groups
    Beltran, Antonio
    Shao, Changguo
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2025, 22 (01)
  • [7] COHOMOLOGICAL TRIVIALITY AND FINITE P-NILPOTENT GROUPS
    BABAKHANIAN, A
    ARCHIV DER MATHEMATIK, 1970, 21 (01) : 40 - +
  • [8] ANOTHER HOMOLOGICAL CHARACTERIZATION OF FINITE P-NILPOTENT GROUPS
    STAMMBACH, U
    MATHEMATISCHE ZEITSCHRIFT, 1977, 156 (02) : 209 - 210
  • [9] FINITE GROUPS WITH p-NILPOTENT OR Φ-SIMPLE MAXIMAL SUBGROUPS
    Bazhanova, E. N.
    Vedernikov, V. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (01) : 19 - 33
  • [10] Some new characterizations of finite p-nilpotent groups
    Xie, Fengyan
    Li, Jinbao
    OPEN MATHEMATICS, 2022, 20 (01): : 1709 - 1714