The Pattern Growth of Carbon Nanotubes by Self-assembled Monolayers Techniques

被引:0
|
作者
KUO Chengtzu~* KUO Deshan CHEN Polin (Department of Materials Science and Engineering Chiao Tung University
机构
关键词
carbon nanotubes; self-assembled monolayers(SAMs); selective deposition; chemical vapor deposition;
D O I
暂无
中图分类号
TB383.1 [];
学科分类号
070205 ; 080501 ; 1406 ;
摘要
The well controllable selective growth of carbon nanotubes (CNTs)on the desired area is an important issue for their future applications. In this study, a novel method for selective growth of CNTs was proposed by using the technology of self-assembly monolayers (SAMs) and the Fe-assisted CNTs growth. The Si wafers with the a: Si/Si;N-4 layer patterns were first prepared by low pressure chemical vapor deposition (LPCVD)and lithography techniques to act as the substrates for selective deposition of SAMs. The selectivity of SAMs from APTMS solution (N-(2-aminoethyl)-3-aminopropyltrimethoxsilane) is based on its greater reactivity of head group on a-Si than Si;N;films. The areas of pattern with SAMs will first chelate the Fe;ions by their diamine-terminated group. The Fe;ions were then consolidated to become Fe-hydroxides in sodium boron hydride solution to form the Fe-hydroxides pattern. Finally, the Fe-hydroxides pattern was pretreated in H plasma to become a well-distributed Fe nano-particles on the surface, and followed by CNTs deposition using Fe as catalyst in a microwave plasma-chemical vapor deposition (MP-CVD) system to become the CNTs pattern. The products in each processing step, including microstrutures and lattice images of CNTs, were characterized by contact angle measurements, scanning electron microscopy (SEM), XPS. Auger spectroscopy,transmission electron microscopy (TEM) and high resolution TEM (HRTEM) deposition. The results show that the main process parameters include the surface activation process and its atmosphere, consolidation time and temperature, H plasma pretreatment. The function of each processing step will be discussed.
引用
收藏
页码:79 / 83
页数:5
相关论文
empty
未找到相关数据