SPECTRAL METHOD FOR ZAKHAROV EQUATION WITH PERIODIC BOUNDARY CONDITIONS

被引:0
|
作者
周振中
机构
基金
中国科学院基金;
关键词
Th; SPECTRAL METHOD FOR ZAKHAROV EQUATION WITH PERIODIC BOUNDARY CONDITIONS; 犯七;
D O I
暂无
中图分类号
学科分类号
摘要
This paper describes the spectral method for numerically solving Zakharov equation with periodicboundary conditions. This method is spectral method for spatial variable and difference method fortime variable. We make error estimation of approximate solution and prove the convergence of spectralmethod. We had given the convergence rate. Also, we prove the stability of approximate method forinitial values.
引用
收藏
页码:279 / 288
页数:10
相关论文
共 50 条
  • [1] Spectral element method for elliptic equations with periodic boundary conditions
    Raju, G. Naga
    Dutt, P.
    Kumar, N. Kishore
    Upadhyay, C. S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 246 : 426 - 439
  • [2] An Explanation of Metastability in the Viscous Burgers Equation with Periodic Boundary Conditions via a Spectral Analysis
    McQuighan, Kelly
    Wayne, C. Eugene
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (04): : 1916 - 1961
  • [3] ON THE PERIODIC ZAKHAROV-KUZNETSOV EQUATION
    Linares, Felipe
    Panthee, Mahendra
    Robert, Tristan
    Tzvetkov, Nikolay
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (06): : 3521 - 3533
  • [4] Koopmans Spectral Functionals in Periodic Boundary Conditions
    Colonna, Nicola
    De Gennaro, Riccardo
    Linscott, Edward
    Marzari, Nicola
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (09) : 5435 - 5448
  • [5] The Burgers equation with periodic boundary conditions on an interval
    Samokhin, A. V.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 188 (03) : 1371 - 1376
  • [6] The Burgers equation with periodic boundary conditions on an interval
    A. V. Samokhin
    [J]. Theoretical and Mathematical Physics, 2016, 188 : 1371 - 1376
  • [7] The null boundary controllability for the Mullins equation with periodic boundary conditions
    Oner, Isil
    [J]. INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2023, 13 (01): : 116 - 122
  • [8] Mixed Spectral-Element Method for the Waveguide Problem With Bloch Periodic Boundary Conditions
    Liu, Jie
    Jiang, Wei
    Liu, Na
    Liu, Qing Huo
    [J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2019, 61 (05) : 1568 - 1577
  • [9] Spectral stability of periodic waves for the Zakharov system
    Hakkaev, Sevdzhan
    Stanislavova, Milena
    Stefanov, Atanas G.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (08)
  • [10] Periodic Solutions to the Wave Equation with Homogeneous Boundary Conditions
    Rudakov I.A.
    [J]. Journal of Mathematical Sciences, 2016, 219 (2) : 253 - 266