Parameter optimization model in electrical discharge machining process

被引:0
|
作者
Qing GAO
机构
基金
中国国家自然科学基金;
关键词
Electrical discharge machining (EDM); Genetic algorithm (GA); Artificial neural network (ANN); Levenberg-Marquardt algorithm;
D O I
暂无
中图分类号
TP391.4 [模式识别与装置];
学科分类号
0811 ; 081101 ; 081104 ; 1405 ;
摘要
Electrical discharge machining (EDM) process, at present is still an experience process, wherein selected parameters are often far from the optimum, and at the same time selecting optimization parameters is costly and time consuming. In this paper, artificial neural network (ANN) and genetic algorithm (GA) are used together to establish the parameter optimization model. An ANN model which adapts Levenberg-Marquardt algorithm has been set up to represent the relationship between material removal rate (MRR) and input parameters, and GA is used to optimize parameters, so that optimization results are obtained. The model is shown to be effective, and MRR is improved using optimized machining parameters.
引用
收藏
页码:104 / 108
页数:5
相关论文
共 8 条
  • [1] 基于Web的人工神经网络电火花加工工艺预测
    杨晓冬
    赵万生
    [J]. 哈尔滨工业大学学报, 2005, (08) : 1029 - 1031
  • [2] 基于进化神经网络的电火花铣削加工电极损耗预测
    李翔龙
    殷国富
    林朝镛
    [J]. 机械工程学报, 2004, (03) : 61 - 65
  • [3] 基于遗传算法的电火花加工电参数优化模型
    杨晓冬
    宋颖慧
    赵万生
    [J]. 哈尔滨工业大学学报, 2002, (04) : 450 - 454
  • [4] Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II[J] . Debabrata Mandal,Surjya K. Pal,Partha Saha.Journal of Materials Processing Tech. . 2006 (1)
  • [5] Multi-objective optimization of wire-electro discharge machining process by Non-Dominated Sorting Genetic Algorithm[J] . Shajan Kuriakose,M.S. Shunmugam.Journal of Materials Processing Tech. . 2005 (1)
  • [6] The study of high efficiency and intelligent optimization system in EDM sinking process[J] . Cao Fenggou,Yang Dayong.Journal of Materials Processing Tech. . 2004 (1)
  • [7] EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses[J] . Shuvra Das,Mathias Klotz,F Klocke.Journal of Materials Processing Tech. . 2003 (2)
  • [8] Predictions on surface finish in electrical discharge machining based upon neural network models
    Tsai, KM
    Wang, PJ
    [J]. INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2001, 41 (10): : 1385 - 1403