Primitive Roots and Linearized Polynomials

被引:0
|
作者
韩文报
机构
[1] Sichuan University
[2] Chengdu
[3] Sichuan
[4] P.R.C.
关键词
GF; Primitive Roots and Linearized Polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
Let f(x) = sum from t=0 to n αixi∈GF(p)[x],we associate it with a ploynomial f*(x)=sum from i=0 to n αixpi,f(x) and f*(x)are called p-associates of each other. f*(x) is called a p-ploynomial,customary to speak of linearized polynomial. Let f(x)=xm- 1/g(x), m = m1r, q = pm, g(x)∈GF(p)[x],r be the order of g(x). Cohen and the author observed that if m1≥2, there alwaysexsists a primitive roots ζ∈GF(q) suck that f*(ζ) = f*(c), here f*(c)≠0. In fact
引用
收藏
页码:460 / 462
页数:3
相关论文
共 10 条
  • [1] Davenport H.Bases for finite fields. Journal of the London Mathematical Society . 1968
  • [2] Han W-B.Power roots of linearized polynomials. Proceedings of the American Mathematical Society . 1992
  • [3] Cohen S D.Primitive ropts in the quadratic extension of a finite field. J. London. Math.Soc . 1983
  • [4] Robba P.Index of p-adic differential operators,Ⅲ: application to twisted exponential sums. Asterisque . 1984
  • [5] Sun Q,Han W-B.On absolute trace and primitive roots in a finite field. Chinese Annals of Mathematics . 1999
  • [6] Jungnickel D,Vanstone S A.On primitive polynomials over finite-fielde. Journal of Algebra . 1989
  • [7] Moreno O.On the exsistence of a primitive quadratic of trace over GF(p~m). Journal of Combinatorial Theory . 1989
  • [8] Lidl R,Niederreiter H.Finite fields. . 1983
  • [9] Moreno O.On primitive elements of trace equal to 1 in GF (2~m ). Discrete Mathematics . 1982
  • [10] Cohen S D.Primitive elements and polynomials with arbitary trace. Discrete Mathematics . 1990