ON CAUCHY-POMPEIU FORMULA FOR FUNCTIONS WITH VALUES IN A UNIVERSAL CLIFFORD ALGEBRA

被引:0
|
作者
Heinrich Begehr
张忠祥
杜金元
机构
[1] Mathematical Institute
[2] Free University
[3] Berlin 14195
[4] Germany Department of Mathematics
[5] Wuhan University
[6] Wuhan 430072
[7] China
关键词
Universal Clifford algebra; Cauchy-Pompeiu formula;
D O I
暂无
中图分类号
O151.24 [向量代数、因子代数、代数不变量论];
学科分类号
070104 ;
摘要
This paper obtains the Cauchy-Pompeiu formula on certain distinguished boundary for functions with values in a universal Clifford algebra. This formula is just an extension of the Cauchy’s integral formula obtained in [11].
引用
收藏
页码:95 / 103
页数:9
相关论文
共 50 条
  • [1] On Cauchy-Pompeiu formula for functions with values in a universal Clifford algebra
    Begehr, H
    Zhang, ZX
    Du, JY
    [J]. ACTA MATHEMATICA SCIENTIA, 2003, 23 (01) : 95 - 103
  • [2] On a higher order Cauchy-Pompeiu formula for functions with values in a universal Clifford algebra
    Zhang, Zhongxiang
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (01) : 87 - 97
  • [3] A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis
    Yuan, Hongfen
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (03) : 795 - 808
  • [4] A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis
    Hongfen Yuan
    [J]. Czechoslovak Mathematical Journal, 2017, 67 : 795 - 808
  • [5] Cauchy-Pompeiu type integral formula for multi-harmonic functions
    Ceballos, Johan
    Ceballos, Mariana
    Di Teodoro, Antonio
    Gonzalez, Daniel
    Ochoa-Tocachi, Diego
    [J]. BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS, 2023, 11 (01):
  • [6] Cauchy Integral Formula on the Distinguished Boundary with Values in Complex Universal Clifford Algebra
    Xu, Na
    Li, Zunfeng
    Yang, Heju
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2021, 31 (05)
  • [7] Cauchy Integral Formula on the Distinguished Boundary with Values in Complex Universal Clifford Algebra
    Na Xu
    Zunfeng Li
    Heju Yang
    [J]. Advances in Applied Clifford Algebras, 2021, 31
  • [8] The Cauchy-Pompeiu integral formula in elliptic complex numbers
    Alayon-Solarz, D.
    Vanegas, C. J.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (09) : 1025 - 1033
  • [9] Cauchy-Pompeiu Formula for Multi-meta-weighted-monogenic Functions of first class
    Garcia, Eusebio Ariza
    Di Teodoro, Antonio
    [J]. MODERN TRENDS IN HYPERCOMPLEX ANALYSIS, 2016, : 1 - 17
  • [10] Some applications of integrated integral operators and Cauchy-Pompeiu representations in Clifford analysis
    Le Hung Son
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2008, 53 (05) : 391 - 400