Quasi-optimal complexity of adaptive finite element method for linear elasticity problems in two dimensions

被引:0
|
作者
Chunmei LIU [1 ]
Liuqiang ZHONG [2 ]
Shi SHU [3 ]
Yingxiong XIAO [4 ]
机构
[1] Institute for Computational Mathematics, College of Science, Hunan University of Science and Engineering
[2] School of Mathematical Sciences, South China Normal University
[3] School of Mathematics and Computational Science, Xiangtan University
[4] College of Civil Engineering and Mechanics, Xiangtan University
基金
中国国家自然科学基金;
关键词
linear elasticity problem; adaptive finite element method(AFEM); quasioptimal complexity;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
This paper introduces an adaptive finite element method(AFEM) using the newest vertex bisection and marking exclusively according to the error estimator without special treatment of oscillation. By the combination of the global lower bound and the localized upper bound of the posteriori error estimator, perturbation of oscillation,and cardinality of the marked element set, it is proved that the AFEM is quasi-optimal for linear elasticity problems in two dimensions, and this conclusion is verified by the numerical examples.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 50 条
  • [1] Quasi-optimal complexity of adaptive finite element method for linear elasticity problems in two dimensions
    Liu, Chunmei
    Zhong, Liuqiang
    Shu, Shi
    Xiao, Yingxiong
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2016, 37 (02) : 151 - 168
  • [2] Quasi-optimal complexity of adaptive finite element method for linear elasticity problems in two dimensions
    Chunmei Liu
    Liuqiang Zhong
    Shi Shu
    Yingxiong Xiao
    [J]. Applied Mathematics and Mechanics, 2016, 37 : 151 - 168
  • [3] Quasi-optimal adaptive hybridized mixed finite element methods for linear elasticity
    Li, Yuwen
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (05): : 1921 - 1939
  • [4] CONVERGENCE AND QUASI-OPTIMAL COMPLEXITY OF A SIMPLE ADAPTIVE FINITE ELEMENT METHOD
    Becker, Roland
    Mao, Shipeng
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (06): : 1203 - 1219
  • [5] A CONVERGENT NONCONFORMING ADAPTIVE FINITE ELEMENT METHOD WITH QUASI-OPTIMAL COMPLEXITY
    Becker, Roland
    Mao, Shipeng
    Shi, Zhongci
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) : 4639 - 4659
  • [6] Quasi-optimal convergence rate for an adaptive finite element method
    Cascon, J. Manuel
    Kreuzer, Christian
    Nochetto, Ricardo H.
    Siebert, Kunibert G.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2524 - 2550
  • [7] AN ADAPTIVE FINITE ELEMENT EIGENVALUE SOLVER OF ASYMPTOTIC QUASI-OPTIMAL COMPUTATIONAL COMPLEXITY
    Carstensen, Carsten
    Gedicke, Joscha
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) : 1029 - 1057
  • [8] Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues
    Dai, Xiaoying
    He, Lianhua
    Zhou, Aihui
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (04) : 1934 - 1977
  • [9] A CONVERGENT ADAPTIVE STOCHASTIC GALERKIN FINITE ELEMENT METHOD WITH QUASI-OPTIMAL SPATIAL MESHES
    Eigel, Martin
    Gittelson, Claude Jeffrey
    Schwab, Christofh
    Zander, Elmar
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (05): : 1367 - 1398
  • [10] QUASI-OPTIMAL CONVERGENCE RATE FOR AN ADAPTIVE BOUNDARY ELEMENT METHOD
    Feischl, M.
    Karkulik, M.
    Melenk, J. M.
    Praetorius, D.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 1327 - 1348