Iterative Reconstruction for Transmission Tomography on GPU Using Nvidia CUDA

被引:0
|
作者
Damien Vintache [1 ]
Bernard Humbert [1 ]
David Brasse [1 ]
机构
[1] Institut Pluridisciplinaire Hubert Curien,CNRS/IN2P3,23 rue du Loess BP28 67037 Strasbourg,France
关键词
tomography; image reconstruction; parallel processing;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
The iterative reconstruction algorithms for X-ray CT image reconstruction suffer from their high computational cost.Recently Nvidia releases common unified device architecture(CUDA),allowing developers to access to the processing power of Nvidia graphical processing units(GPUs),in order to perform general purpose computations.The use of the GPU,as an alternative computation platform,allows decreasing processing times,for parallel algorithms.This paper aims to demonstrate the feasibility of such an implementation for the iterative image reconstruction.The ordered subsets convex(OSC) algorithm,an iterative reconstruction algorithm for transmission tomography,has been developed with CUDA.The performances have been evaluated and compared with another implementation using a single CPU node.The result shows that speed-ups of two orders of magnitude,with a negligible impact on image accuracy,have been observed.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [1] Iterative Reconstruction for Transmission Tomography on GPU Using Nvidia CUDA
    Vintache, Damien
    Humbert, Bernard
    Brasse, David
    [J]. Tsinghua Science and Technology, 2010, 15 (01) : 11 - 16
  • [2] Correlation analysis on GPU systems using NVIDIA's CUDA
    Gembris, Daniel
    Neeb, Markus
    Gipp, Markus
    Kugel, Andreas
    Maenner, Reinhard
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2011, 6 (04) : 275 - 280
  • [3] Correlation analysis on GPU systems using NVIDIA’s CUDA
    Daniel Gembris
    Markus Neeb
    Markus Gipp
    Andreas Kugel
    Reinhard Männer
    [J]. Journal of Real-Time Image Processing, 2011, 6 : 275 - 280
  • [4] An Effective CUDA Parallelization of Projection in Iterative Tomography Reconstruction
    Xie, Lizhe
    Hu, Yining
    Yan, Bin
    Wang, Lin
    Yang, Benqiang
    Liu, Wenyuan
    Zhang, Libo
    Luo, Limin
    Shu, Huazhong
    Chen, Yang
    [J]. PLOS ONE, 2015, 10 (11):
  • [5] GPU Acceleration of a Fully 3D Iterative Reconstruction Software for PET using CUDA
    Herraiz, J. L.
    Espana, S.
    Garcia, S.
    Cabido, R.
    Montemayor, A. S.
    Desco, M.
    Vaquero, J. J.
    Udias, J. M.
    [J]. 2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, : 4064 - +
  • [6] Ultrafast Multipinhole Single Photon Emission Computed Tomography Iterative Reconstruction Using CUDA
    Alhassen, Fares
    Kim, Sangtaek
    Sayre, George A.
    Bowen, Jason D.
    Gould, Robert
    Seo, Youngho
    Kudrolli, Haris
    Singh, Bipin
    Nagarkar, Vivek V.
    [J]. 2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 2558 - +
  • [7] GPU accelerated Cartesian GRAPPA reconstruction using CUDA
    Inam, Omair
    Qureshi, Mahmood
    Laraib, Zoia
    Akram, Hamza
    Omer, Hammad
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2022, 337
  • [8] GPU-accelerated MoM based scattering/radiation analysis using NVIDIA CUDA
    Soni, Hemlata
    Chhawcharia, Pradeep
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), 2015, : 318 - 322
  • [9] Parallel approach to tomographic reconstruction algorithm using a Nvidia GPU
    Valencia Perez, Tomas Antonio
    Hernandez Lopez, Javier Miguel
    Moreno Barbosa, Eduardo
    Martinez Hernandez, Mario Ivan
    Tejeda Munoz, Guillermo
    de Celis Alonso, Benito
    [J]. XV MEXICAN SYMPOSIUM ON MEDICAL PHYSICS, 2019, 2090
  • [10] GPU-based iterative transmission reconstruction in 3D ultrasound computer tomography
    Birk, Matthias
    Dapp, Robin
    Ruiter, N. V.
    Becker, J.
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2014, 74 (01) : 1730 - 1743