Analysis of Numerical Integration Error for Bessel Integral Identity in Fast Multipole Method for 2D Helmholtz Equation

被引:0
|
作者
吴海军 [1 ]
蒋伟康 [1 ]
刘轶军 [2 ]
机构
[1] State Key Laboratory of Machinery System and Vibration,Shanghai Jiaotong University
[2] Department of Mechanical Engineering,University of Cincinnati
基金
中国国家自然科学基金;
关键词
Bessel integral identity; fast multipole method; boundary element method; 2D Helmholtz equation;
D O I
暂无
中图分类号
O241.4 [数值积分法、数值微分法];
学科分类号
070102 ;
摘要
In 2D fast multipole method for scattering problems,square quadrature rule is used to discretize the Bessel integral identity for diagonal expansion of 2D Helmholtz kernel,and numerical integration error is introduced. Taking advantage of the relationship between Euler-Maclaurin formula and trapezoidal quadrature rule,and the relationship between trapezoidal and square quadrature rule,sharp computable bound with analytical form on the error of numerical integration of Bessel integral identity by square quadrature rule is derived in this paper. Numerical experiments are presented at the end to demonstrate the accuracy of the sharp computable bound on the numerical integration error.
引用
收藏
页码:690 / 693
页数:4
相关论文
共 50 条
  • [1] Analysis of numerical integration error for Bessel integral identity in fast multipole method for 2D Helmholtz equation
    Wu H.-J.
    Jiang W.-K.
    Liu Y.-J.
    [J]. Journal of Shanghai Jiaotong University (Science), 2010, 15 (6) : 690 - 693
  • [2] A fast numerical method for a natural boundary integral equation for the Helmholtz equation
    Li, Song-Hua
    Sun, Ming-Bao
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (02) : 341 - 350
  • [3] Nodal Numerical 2D Helmholtz Equation: Truncation Analysis
    Morevs, Patriks
    Rimshans, Janis
    Guseynov, Sharif E.
    [J]. INTER ACADEMIA 2010: GLOBAL RESEARCH AND EDUCATION, 2011, 222 : 345 - 348
  • [4] A SPECTRAL BOUNDARY INTEGRAL-EQUATION METHOD FOR THE 2D HELMHOLTZ-EQUATION
    HU, FQ
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 120 (02) : 340 - 347
  • [5] FAST MULTIPOLE METHOD FOR 3-D HELMHOLTZ EQUATION IN LAYERED MEDIA
    Wang, Bo
    Zhang, Wenzhong
    Cai, Wei
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (06): : A3954 - A3981
  • [6] A STUDY OF FAST MULTIPOLE METHOD ON THE ANALYSIS OF 2D BARRIER
    Wu, C. -H.
    Wang, C. -N.
    Wu, T. -D.
    [J]. JOURNAL OF MECHANICS, 2009, 25 (03) : 233 - 240
  • [7] Error analysis for a fast numerical method to a boundary integral equation of the first kind
    Ma, Jingtang
    Tang, Tao
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2008, 26 (01) : 56 - 68
  • [9] A numerical method for the generalized Love integral equation in 2D
    Fermo, Luisa
    Russo, Maria Grazia
    Serafini, Giada
    [J]. DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2021, 14 : 46 - 57
  • [10] Numerical performance of a parallel solution method for a heterogeneous 2D Helmholtz equation
    Kononov, A. V.
    Riyanti, C. D.
    de Leeuw, S. W.
    Oosterlee, C. W.
    Vuik, C.
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2008, 11 (03) : 139 - 146