The Core and Shapley Value of M Sum-Compound Game

被引:1
|
作者
Zhao Jingzhu(Research Center for Eco-Environmental Sciences
机构
关键词
M sum-compound; game; core; Shapley value;
D O I
暂无
中图分类号
学科分类号
摘要
The M sum-compound game of two games G=(N) and G=(N) with intersection sets of players is defined to be a game G=(N,v),where N=NUNand v(S)=u(S∩M)+u(S∩M)+max{u(S∩M),u(S∩M)} (M=N∩N,M=N-M, i=1,2). The core and Shapley value of the M sum-compound game are studied in this paper.
引用
收藏
页码:333 / 340
页数:8
相关论文
共 50 条
  • [1] THE FUZZY CORE OF SUM-COMPOUND FUZZY GAMES
    Zhao Jingzhu~* (Research Center for Eco-Environmental Sciences
    中国科学院大学学报, 1989, (02) : 18 - 20
  • [2] Axiomatic characterizations of the core and the Shapley value of the broadcasting game
    Bergantinos, Gustavo
    Moreno-Ternero, Juan D.
    INTERNATIONAL JOURNAL OF GAME THEORY, 2024,
  • [3] The stable sets of sum-compound repeated fuzzy cooperative games
    Jiang, Ning
    Gao, Zuo-feng
    Ma, Ying
    Guo, Lei
    Li, Wei
    Proceedings of the Second International Conference on Game Theory and Applications, 2007, : 83 - 86
  • [4] The Shapley value for the probability game
    Hou, Dongshuang
    Xu, Genjiu
    Sun, Panfei
    Driessen, Theo
    OPERATIONS RESEARCH LETTERS, 2018, 46 (04) : 457 - 461
  • [5] The Shapley value in the Knaster gain game
    Briata, Federica
    Dall'Aglio, Andrea
    Dall'Aglio, Marco
    Fragnelli, Vito
    ANNALS OF OPERATIONS RESEARCH, 2017, 259 (1-2) : 1 - 19
  • [6] The Shapley value in the Knaster gain game
    Federica Briata
    Andrea Dall’Aglio
    Marco Dall’Aglio
    Vito Fragnelli
    Annals of Operations Research, 2017, 259 : 1 - 19
  • [7] Shapley value for constant-sum games
    Khmelnitskaya, AB
    INTERNATIONAL JOURNAL OF GAME THEORY, 2003, 32 (02) : 223 - 227
  • [8] Shapley value for constant-sum games
    Anna B. Khmelnitskaya
    International Journal of Game Theory, 2003, 32 : 223 - 227
  • [9] The asymptotic shapley value for a simple market game
    Thomas M. Liggett
    Steven A. Lippman
    Richard P. Rumelt
    Economic Theory, 2009, 40 : 333 - 338
  • [10] Axiomatic of the Shapley value of a game with a priori unions
    Alonso-Meijide, J. M.
    Casas-Mendez, B.
    Gonzalez-Rueda, A. M.
    Lorenzo-Freire, S.
    TOP, 2014, 22 (02) : 749 - 770