Genome-wide identification of TPS genes in sesame and analysis of their expression in response to abiotic stresses

被引:3
|
作者
Wangyi Zhou [1 ]
Chen Sheng [1 ]
Senouwa Segla Koffi Dossou [1 ]
Zhijian Wang [1 ]
Shengnan Song [1 ]
Jun You [1 ]
Linhai Wang [1 ]
机构
[1] Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences
关键词
D O I
暂无
中图分类号
S565.3 [芝麻(脂麻)];
学科分类号
0901 ;
摘要
Trehalose and its precursor, trehalose-6-phosphate, play critical roles in plant metabolism and response to abiotic stresses. Trehalose-6-phosphate synthase(TPS) is a key enzyme in the trehalose synthesis pathway. Hence this study identified TPS genes in sesame(Si TPSs) and examined their expression patterns under various abiotic stresses. Totally, ten Si TPSs were identified and comprehensively characterized. Si TPSs were found to be unevenly distributed on five out of 13 sesame chromosomes and were predicted to be localized in chloroplasts and vacuoles of cells. Phylogenetic analysis classified Si TPS proteins into two groups(I and II), which was supported by gene structure and conserved motif analyses. Analysis of cis-acting elements in promoter regions of Si TPSs revealed that they might primarily involve developmental and environmental responses. Si TPSs exhibited different expression patterns in different tissues and under different abiotic stresses. Most group II Si TPS genes(Si TPS4-Si TPS10) were strongly induced by drought, salt, waterlogging, and osmotic stress. Particularly, Si TPS10 was the most significantly up-regulated under various abiotic stresses, indicating it is a candidate gene for improving sesame tolerance to multiple abiotic stresses. Our results provide insight into the TPS gene family in sesame and fundamental resources for genomics studies towards dissecting Si TPS genes’ functions.
引用
下载
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
  • [1] Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses
    Li, Donghua
    Liu, Pan
    Yu, Jingyin
    Wang, Linhai
    Dossa, Komivi
    Zhang, Yanxin
    Zhou, Rong
    Wei, Xin
    Zhang, Xiurong
    BMC PLANT BIOLOGY, 2017, 17
  • [2] Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses
    Donghua Li
    Pan Liu
    Jingyin Yu
    Linhai Wang
    Komivi Dossa
    Yanxin Zhang
    Rong Zhou
    Xin Wei
    Xiurong Zhang
    BMC Plant Biology, 17
  • [3] Genome-wide identification of chitinase genes in Thalassiosira pseudonana and analysis of their expression under abiotic stresses
    Cheng, Haomiao
    Shao, Zhanru
    Lu, Chang
    Duan, Delin
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [4] Genome-wide identification of chitinase genes in Thalassiosira pseudonana and analysis of their expression under abiotic stresses
    Haomiao Cheng
    Zhanru Shao
    Chang Lu
    Delin Duan
    BMC Plant Biology, 21
  • [5] Genome-Wide Identification of BrCMF Genes in Brassica rapa and Their Expression Analysis under Abiotic Stresses
    Chen, Luhan
    Wu, Xiaoyu
    Zhang, Meiqi
    Yang, Lin
    Ji, Zhaojing
    Chen, Rui
    Cao, Yunyun
    Huang, Jiabao
    Duan, Qiaohong
    PLANTS-BASEL, 2024, 13 (08):
  • [6] Genome-wide identification and expression analysis of SlRR genes in response to abiotic stress in tomato
    Liu, H.
    Chen, R.
    Li, H.
    Lin, J.
    Wang, Y.
    Han, M.
    Wang, T.
    Wang, H.
    Chen, Q.
    Chen, F.
    Chu, P.
    Liang, C.
    Ren, C.
    Zhang, Y.
    Yang, F.
    Sheng, Y.
    Wei, J.
    Wu, X.
    Yu, G.
    PLANT BIOLOGY, 2023, 25 (02) : 322 - 333
  • [7] Genome-wide identification and expression analysis of NADPH oxidase genes in response to ABA and abiotic stresses, and in fibre formation in Gossypium
    Zhang, Gaofeng
    Yue, Caimeng
    Lu, Tingting
    Sun, Lirong
    Hao, Fushun
    PEERJ, 2020, 8
  • [8] Genome-wide identification and expression analysis of tomato glycoside hydrolase family 1 β-glucosidase genes in response to abiotic stresses
    Wei, Jinpeng
    Chen, Qiusen
    Lin, Jiaxin
    Chen, Fengqiong
    Chen, Runan
    Liu, Hanlin
    Chu, Peiyu
    Lu, Zhiyong
    Li, Shaozhe
    Yu, Gaobo
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2022, 36 (01) : 268 - 280
  • [9] Genome-Wide Identification of JRL Genes in Moso Bamboo and Their Expression Profiles in Response to Multiple Hormones and Abiotic Stresses
    Zhang, Zhijun
    Huang, Bin
    Chen, Jialu
    Jiao, Yang
    Guo, Hui
    Liu, Shenkui
    Ramakrishnan, Muthusamy
    Qi, Guoning
    FRONTIERS IN PLANT SCIENCE, 2022, 12
  • [10] Genome-Wide Identification and Expression Analysis of the Cucumber FKBP Gene Family in Response to Abiotic and Biotic Stresses
    Yang, Dekun
    Li, Yahui
    Zhu, Mengdi
    Cui, Rongjing
    Gao, Jiong
    Shu, Yingjie
    Lu, Xiaomin
    Zhang, Huijun
    Zhang, Kaijing
    GENES, 2023, 14 (11)