THE STRUCTURE OF ORTHOGONAL GROUPS OVER ARBITRARY COMMUTATIVE RINGS

被引:1
|
作者
李福安 [1 ]
机构
[1] Institute of Mathematics Academia Sinica Beijing China
关键词
THE STRUCTURE OF ORTHOGONAL GROUPS OVER ARBITRARY COMMUTATIVE RINGS; over; Th;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be an arbitrary commutative ring, and n an integer≥3. It is proved for any ideal J of R thatEO2n(R, J)=[EO2n(R), EO2n(J)]=[EO2n(R), EO2n(R, J)]=[EO2n(R), O2n(R,J)]=[O2n(R), EO2n(R,J)].In particular, EO2n(R, J) is a normal subgroupof O2n(R). Furthermore, the problem of normal subgroups of O2n(R) has an affirmative solution if and only if aR∩ Ann(2)=α2 Ann(2) for each a in R. In particular, if 2 is not a zero divisor in R, then the problem of normal subgroups of O2n(R) has an affirmative solution
引用
收藏
页码:341 / 350
页数:10
相关论文
共 50 条