MULTIFRACTAL ANALYSIS OF THE CONVERGENCE EXPONENT IN CONTINUED FRACTIONS

被引:0
|
作者
房路路 [1 ]
马际华 [2 ]
宋昆昆 [3 ]
吴敏 [4 ]
机构
[1] School of Science, Nanjing University of Science and Technology
[2] School of Mathematics and Statistics, Wuhan University
[3] Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University
[4] School of Mathematics, South China University of Technology
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
Let x ∈(0, 1) be a real number with continued fraction expansion [a1(x), a2(x),a3(x), ··· ]. This paper is concerned with the multifractal spectrum of the convergence exponent of {an(x)}n≥1defined by■
引用
收藏
页码:1896 / 1910
页数:15
相关论文
共 50 条
  • [1] MULTIFRACTAL ANALYSIS OF THE CONVERGENCE EXPONENT IN CONTINUED FRACTIONS
    Fang, Lulu
    Ma, Jihua
    Song, Kunkun
    Wu, Min
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (06) : 1896 - 1910
  • [2] Multifractal Analysis of the Convergence Exponent in Continued Fractions
    Lulu Fang
    Jihua Ma
    Kunkun Song
    Min Wu
    Acta Mathematica Scientia, 2021, 41 : 1896 - 1910
  • [3] Multifractal Analysis of Convergence Exponents for Products of Consecutive Partial Quotients in Continued Fractions
    Fang, Lulu
    Ma, Jihua
    Song, Kunkun
    Yang, Xin
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (4) : 1594 - 1608
  • [4] Multifractal analysis of the Lyapunov exponent for the backward continued fraction map
    Iommi, Godofredo
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 : 211 - 232
  • [5] On the convergence of continued fractions
    Kluyver, JC
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1928, 31 (6/10): : 870 - 877
  • [6] CONVERGENCE OF CONTINUED FRACTIONS
    JONES, WB
    THRON, WJ
    CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (05): : 1037 - &
  • [7] Irrationality exponent and convergence exponent in continued fraction expansions
    Song, Kunkun
    Tan, Xiaoyan
    Zhang, Zhenliang
    NONLINEARITY, 2024, 37 (02)
  • [8] CONVERGENCE OF NONCOMMUTATIVE CONTINUED FRACTIONS
    PENG, ST
    HESSEL, A
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1975, 6 (04) : 724 - 727
  • [9] A convergence theorem for continued fractions
    Scott, W. T.
    Wall, H. S.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1940, 47 (1-3) : 155 - 172
  • [10] GENERAL CONVERGENCE OF CONTINUED FRACTIONS
    JACOBSEN, L
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 294 (02) : 477 - 485