Eigenvalues of the Negative Laplacian for Simply Connected Bounded Domains

被引:0
|
作者
E.M.E.Zayed (Mathematics Department
机构
关键词
Inverse problem; Arbitrary bounded domains; Negative Laplacian; Eigenvalues; Spectral function;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
This paper is devoted to asymptotic formulae for functions related with the spectrumof the negative Laplacian in two and three dimensional bounded simply connected domains withimpedance boundary conditions,where the impedances are assumed to be discontinuous functions.Moreover,asymptotic expressions for the difference of eigenvalues related to the impedance problemswith different impedances are derived.Further results may be obtained.
引用
收藏
页码:337 / 346
页数:10
相关论文
共 50 条
  • [1] Eigenvalues of the negative Laplacian for simply connected bounded domains
    E. M. E. Zayed
    [J]. Acta Mathematica Sinica, 1997, 13 (3) : 337 - 346
  • [2] Eigenvalues of the Negative Laplacian for Simply Connected Bounded Domains
    E.M.E.Zayed (Mathematics Department
    Faculty of Science
    Zagazig University
    Zagazig
    Egypt)
    [J]. Acta Mathematica Sinica(New Series), 1997, 13 (03) : 337 - 346
  • [4] Steklov Eigenvalues and Quasiconformal Maps of Simply Connected Planar Domains
    A. Girouard
    R. S. Laugesen
    B. A. Siudeja
    [J]. Archive for Rational Mechanics and Analysis, 2016, 219 : 903 - 936
  • [5] Steklov Eigenvalues and Quasiconformal Maps of Simply Connected Planar Domains
    Girouard, A.
    Laugesen, R. S.
    Siudeja, B. A.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 219 (02) : 903 - 936
  • [6] On Laplacian eigenvalues of connected graphs
    Igor Ž. Milovanović
    Emina I. Milovanović
    Edin Glogić
    [J]. Czechoslovak Mathematical Journal, 2015, 65 : 529 - 535
  • [7] On the multiplicity of the second eigenvalue of the Laplacian in non simply connected domains with some numerics
    Helffer, B.
    Hoffmann-Ostenhof, T.
    Jauberteau, F.
    Léna, C.
    [J]. Asymptotic Analysis, 2021, 121 (01) : 35 - 57
  • [8] On the multiplicity of the second eigenvalue of the Laplacian in non simply connected domains - with some numerics -
    Helffer, B.
    Hoffmann-Ostenhof, T.
    Jauberteau, F.
    Lena, C.
    [J]. ASYMPTOTIC ANALYSIS, 2020, 121 (01) : 35 - 57
  • [9] On Laplacian eigenvalues of connected graphs
    Milovanovic, Igor Z.
    Milovanovic, Emina I.
    Glogic, Edin
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (02) : 529 - 535
  • [10] Fractional Laplacian in bounded domains
    Zoia, A.
    Rosso, A.
    Kardar, M.
    [J]. PHYSICAL REVIEW E, 2007, 76 (02):