基于聚类的快速数据流匿名方法

被引:5
|
作者
郭昆 [1 ]
张岐山 [2 ]
机构
[1] 福州大学数学与计算机科学学院
[2] 福州大学管理学院
关键词
数据匿名; 数据流; 聚类;
D O I
暂无
中图分类号
TP311.13 [];
学科分类号
1201 ;
摘要
为了防止敏感信息的泄漏,保护用户隐私,常采用概化和抑制等技术在共享数据前对其准标识符进行匿名化.与静态数据集不同,数据流具有潜在无限、高度动态等特性,使得数据流匿名需要解决更加复杂的问题,不能直接应用静态数据集的匿名方法.在分析现有数据流匿名方法的基础上,提出一种采用聚类思想进行数据流匿名的方法,通过单遍扫描数据识别和重用满足匿名条件的簇,以实现数据流的快速匿名.真实数据集上的实验结果表明,该方法在满足匿名要求的同时能够降低概化和抑制处理带来的信息损失,并且具有较低的时间和空间复杂度.
引用
收藏
页码:1852 / 1867
页数:16
相关论文
共 21 条
  • [1] Mondrian multidimensional K-anonymity. LEFEVRE K,DEWITT D,RAMAKRISHNAN R. Proc of22nd ICDE . 2006
  • [2] Data privacy through optimal k-anonymization. R. Bayardo,R. Agrawal. the 21st International Conference on Data Engineering (ICDE’05) . 2005
  • [3] Transforming data to satisfy privacy constraints. Iyengar V S. Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . 2002
  • [4] Hiding in the crowd:Privacy preservation on evolving streams through correlation tracking. Feifei Li,Jimeng Sun,Spiros Papadimitriou,George A Mihaila,Ioana Stanoi. IEEE 23rd International Conference on Data Engineering ICDE’’07 . 2007
  • [5] Incognito:Efficient full-domain K-anonymity. LeFevre K,DeWitt DJ,Ramakrishnan R. Proc.of the Int’l Conf.on Management of Data . 2005
  • [6] l-diversity: Privacy beyond k-anonymity. Machanavajjhala A,Kifer D,Gehrke J, et al. ACM Transactions on Knowledge Discovery from Data . 2007
  • [7] Top-down specialization for information and privacy preservation. Fung B C M,Wang K,Yu P S. Proceedings of the 21st International Conference on Data Engineering(ICDE) . 2005
  • [8] K-anonymity: A model for protecting privacy. Sweeney L. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems . 2002
  • [9] Anonymization-Based Attacks in Privacy-PreservingData Publishing. Wong R C-W,Fu A W-C,Wang K, et al. ACM Transaction of Database System . 2009
  • [10] Privacy-Preserving data publishing for cluster analysis. Fung BCM,Wang K,Wang LY,Hung PCK. Data and Knowledge Engineering . 2009