A FAMILY OF GRADIENT PROJECTION METHODS

被引:0
|
作者
堵丁柱
机构
[1] Academia Sinica
[2] Institute of Applied Mathematics
关键词
A FAMILY OF GRADIENT PROJECTION METHODS; PJ; 二七; 罗二; 七无;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper,we give a family of gradient projection methods with three parameters and theirconvergent properties.This family includes Rosen’s gradient projection method,Wolfe’s reducedgradient method and Zangwill’s convex simplex method as its special cases.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] A family of supermemory gradient projection methods for constrained optimization
    Wang, YJ
    Wang, CY
    Xiu, NH
    [J]. OPTIMIZATION, 2002, 51 (06) : 889 - 905
  • [2] On a Family of Gradient-Type Projection Methods for Nonlinear Ill-Posed Problems
    Leitao, Antonio
    Svaiter, Benar F.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (11) : 1153 - 1180
  • [3] A Family of Projection Gradient Methods for Solving the Multiple-Sets Split Feasibility Problem
    Jinhua Wang
    Yaohua Hu
    Carisa Kwok Wai Yu
    Xiaojun Zhuang
    [J]. Journal of Optimization Theory and Applications, 2019, 183 : 520 - 534
  • [4] A GRADIENT PROJECTION ALGORITHM FOR RELAXATION METHODS
    MOHAMMED, JL
    HUMMEL, RA
    ZUCKER, SW
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1983, 5 (03) : 330 - 332
  • [5] A Family of Projection Gradient Methods for Solving the Multiple-Sets Split Feasibility Problem
    Wang, Jinhua
    Hu, Yaohua
    Yu, Carisa Kwok Wai
    Zhuang, Xiaojun
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 183 (02) : 520 - 534
  • [6] Gradient projection and conditional gradient methods for constrained nonconvex minimization
    Balashov, M.V.
    Polyak, B.T.
    Tremba, A.A.
    [J]. arXiv, 2019,
  • [7] Gradient Projection and Conditional Gradient Methods for Constrained Nonconvex Minimization
    Balashov, M. V.
    Polyak, B. T.
    Tremba, A. A.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (07) : 822 - 849
  • [8] Gradient Projection and Conditional Gradient Methods for Constrained Nonconvex Minimization
    Balashov, M.V.
    Polyak, B.T.
    Tremba, A.A.
    [J]. Numerical Functional Analysis and Optimization, 2020, 41 (07): : 822 - 849
  • [9] SCALED GRADIENT PROJECTION METHODS FOR ASTRONOMICAL IMAGING
    Bertero, M.
    Boccacci, P.
    Prato, M.
    Zanni, L.
    [J]. NEW CONCEPTS IN IMAGING: OPTICAL AND STATISTICAL MODELS, 2013, 59 : 325 - +
  • [10] Variant Gradient Projection Methods for the Minimization Problems
    Yao, Yonghong
    Liou, Yeong-Cheng
    Wen, Ching-Feng
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,