Minimum Principle for Plurisubharmonic Functions and Related Topics

被引:0
|
作者
Fu Sheng DENG [1 ]
Hui Ping ZHANG [2 ]
Xiang Yu ZHOU [3 ]
机构
[1] School of Mathematical Sciences, University of Chinese Academy of Sciences
[2] Department of Mathematics, School of Information, Renmin (People's) University of China
[3] Institute of Mathematics, AMSS, and Hua Loo-Keng Key Laboratory of Mathematics,Chinese Academy of Sciences
关键词
Minimum principle; plurisubharmonic functions; Stein manifolds; geometric invariant theory; group actions; holomorphic vector bundles;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
This is a survey about some recent developments of the minimum principle for plurisubharmonic functions and related topics.
引用
收藏
页码:1278 / 1288
页数:11
相关论文
共 50 条
  • [1] Minimum Principle for Plurisubharmonic Functions and Related Topics
    Fu Sheng Deng
    Hui Ping Zhang
    Xiang Yu Zhou
    Acta Mathematica Sinica, English Series, 2018, 34 : 1278 - 1288
  • [2] Minimum Principle for Plurisubharmonic Functions and Related Topics
    Fu Sheng DENG
    Hui Ping ZHANG
    Xiang Yu ZHOU
    Acta Mathematica Sinica, 2018, 34 (08) : 1278 - 1288
  • [3] Minimum Principle for Plurisubharmonic Functions and Related Topics
    Deng, Fu Sheng
    Zhang, Hui Ping
    Zhou, Xiang Yu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (08) : 1278 - 1288
  • [4] A minimum principle for plurisubharmonic functions
    Zeriahi, Ahmed
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (06) : 2671 - 2696
  • [5] A new proof of Kiselman's minimum principle for plurisubharmonic functions
    Deng, Fusheng
    Wang, Zhiwei
    Zhang, Liyou
    Zhou, Xiangyu
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (04) : 345 - 348
  • [6] Prekopa's theorem and Kiselman's minimum principle for plurisubharmonic functions
    Bo Berndtsson
    Mathematische Annalen, 1998, 312 : 785 - 792
  • [7] Prekopa's theorem and Kiselman's minimum principle for plurisubharmonic functions
    Berndtsson, B
    MATHEMATISCHE ANNALEN, 1998, 312 (04) : 785 - 792
  • [8] A MAXIMUM PRINCIPLE FOR SUBHARMONIC AND PLURISUBHARMONIC-FUNCTIONS
    CHEN, HH
    GAUTHIER, PM
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (01): : 34 - 39
  • [9] SOME GENERALIZATION OF THE MAXIMUM PRINCIPLE FOR THE QUOTIENT OF PLURISUBHARMONIC FUNCTIONS
    CHADZYNSKI, J
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1978, 26 (08): : 695 - 699
  • [10] The minimum sets and free boundaries of strictly plurisubharmonic functions
    Sławomir Dinew
    Żywomir Dinew
    Calculus of Variations and Partial Differential Equations, 2016, 55