Traveling wave solutions for two nonlinear evolution equations with nonlinear terms of any order

被引:0
|
作者
冯青华 [1 ,2 ]
孟凡伟 [2 ]
张耀明 [1 ]
机构
[1] School of Science,Shandong University of Technology
[2] School of Mathematical Sciences,Qufu Normal University
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
first integral method; Riccati equation; nonlinear equation; traveling wave solution;
D O I
暂无
中图分类号
O411.1 [数学物理方法]; O175 [微分方程、积分方程];
学科分类号
0701 ; 070104 ;
摘要
In this paper,based on the known first integral method and the Riccati sub-ordinary differential equation (ODE) method,we try to seek the exact solutions of the general Gardner equation and the general Benjamin-Bona-Mahoney equation.As a result,some traveling wave solutions for the two nonlinear equations are established successfully.Also we make a comparison between the two methods.It turns out that the Riccati sub-ODE method is more effective than the first integral method in handling the proposed problems,and more general solutions are constructed by the Riccati sub-ODE method.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 50 条
  • [1] Traveling wave solutions for two nonlinear evolution equations with nonlinear terms of any order
    Qing-Hua, Feng
    Fan-Wei, Meng
    Yao-Ming, Zhang
    CHINESE PHYSICS B, 2011, 20 (12)
  • [2] Traveling solitary wave solutions to evolution equations with nonlinear terms of any order
    Feng, ZS
    CHAOS SOLITONS & FRACTALS, 2003, 17 (05) : 861 - 868
  • [3] Exact traveling wave solutions for some nonlinear evolution equations with nonlinear terms of any order
    Chen, Y
    Li, B
    Zhang, HQ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (01): : 99 - 112
  • [4] Traveling wave solutions of the compound KdV-type equation with nonlinear terms of any order
    Yang, Xian-Lin
    Tang, Jia-Shi
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2008, 123 (05): : 523 - 532
  • [5] Explicit Traveling Wave Solutions to Nonlinear Evolution Equations
    Linghai ZHANG 11 Department of Mathematics
    ChineseAnnalsofMathematics(SeriesB), 2011, 32 (06) : 929 - 964
  • [6] Traveling wave solutions of the generalized nonlinear evolution equations
    Kudryashov, Nikolai A.
    Demina, Maria V.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) : 551 - 557
  • [7] Explicit traveling wave solutions to nonlinear evolution equations
    Zhang, Linghai
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (06) : 929 - 964
  • [8] Explicit traveling wave solutions to nonlinear evolution equations
    Linghai Zhang
    Chinese Annals of Mathematics, Series B, 2011, 32 : 929 - 964
  • [9] New traveling wave solutions for nonlinear evolution equations
    El-Wakil, S. A.
    Madkour, M. A.
    Abdou, M. A.
    PHYSICS LETTERS A, 2007, 365 (5-6) : 429 - 438
  • [10] Traveling wave solutions of some nonlinear evolution equations
    Islam, Rafiqul
    Khan, Kamruzzaman
    Akbar, M. Ali
    Islam, Md. Ekramul
    Ahmed, Md. Tanjir
    ALEXANDRIA ENGINEERING JOURNAL, 2015, 54 (02) : 263 - 269