Frame Self-orthogonal Mendelsohn Triple Systems

被引:0
|
作者
Yun Qing XU Department of Mathematics
机构
基金
美国国家科学基金会;
关键词
Mendelsohn triple system; Latin square; Quasigroup; Group divisible design;
D O I
暂无
中图分类号
O153 [抽象代数(近世代数)];
学科分类号
070104 ;
摘要
A Mendelsohn triple system of order v,MTS(v)for short,is a pair(X,B)where X is av-set(of points)and B is a collection of cyclic triples on X such that every ordered pair of distinctpoints from X appears in exactly one cyclic triple of B.The cyclic triple(a,b,c)contains the orderedpairs(a,b),(b,c)and(c,a).An MTS(v)corresponds to an idempotent semisymmetric Latin square(quasigroup)of order v.An MTS(v)is called frame self-orthogonal,FSOMTS for short,if its associatedsemisymmetric Latin square is frame self-orthogonal.It is known that an FSOMTS(1~n)exists for alln≡1(mod 3)except n=10 and for all n≥15,n≡0(mod 3)with possible exception that n=18.Inthis paper,it is shown that(i)an FSOMTS(2~n)exists if and only if n≡0,1(mod 3)and n>5 withpossible exceptions n ∈{9,27,33,39};(ii)an FSOMTS(3~n)exists if and only if n≥4,with possibleexceptions that n ∈{6,14,18,19}.
引用
收藏
页码:913 / 924
页数:12
相关论文
共 50 条
  • [1] Frame Self-orthogonal Mendelsohn Triple Systems
    Yun Qing Xu*
    Han Tao Zhang**
    Acta Mathematica Sinica, 2004, 20 : 913 - 924
  • [2] Frame self-orthogonal Mendelsohn triple systems
    Xu, YQ
    Zhang, HT
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (05) : 913 - 924
  • [3] Frame self-orthogonal Mendelsohn triple systems of type hn
    Xu, Yunqing
    Chang, Yanxun
    Ge, Gennian
    Zhang, Hantao
    DISCRETE MATHEMATICS, 2008, 308 (22) : 5049 - 5063
  • [4] Self-orthogonal Mendelsohn triple systems
    Bennett, FE
    Zhang, H
    Zhu, L
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 73 (02) : 207 - 218
  • [5] SELF-ORTHOGONAL STEINER SYSTEMS AND PROJECTIVE PLANES
    ASSMUS, EF
    MATTSON, HF
    GUZA, M
    MATHEMATISCHE ZEITSCHRIFT, 1974, 138 (01) : 89 - 96
  • [6] SELF-ORTHOGONAL LATIN SQUARES
    BRAYTON, RK
    COPPERSM.D
    HOFFMAN, AJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A513 - A513
  • [7] Self-orthogonal greedy codes
    Des Codes Cryptography, 1 (79):
  • [8] Self-orthogonal greedy codes
    Monroe, L
    CODES, DESIGNS AND GEOMETRY, 1996, : 75 - 79
  • [9] A NOTE ON SELF-ORTHOGONAL CODES
    POTT, A
    DISCRETE MATHEMATICS, 1989, 76 (03) : 283 - 284
  • [10] Constructing self-orthogonal and Hermitian self-orthogonal codes via weighing matrices and orbit matrices
    Crnkovic, Dean
    Egan, Ronan
    Svob, Andrea
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 55 : 64 - 77